Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | uznn0sub | |- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 | |- ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
|
2 | znn0sub | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
|
3 | 2 | biimp3a | |- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( N - M ) e. NN0 ) |
4 | 1 3 | sylbi | |- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |