Metamath Proof Explorer


Theorem uznn0sub

Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion uznn0sub
|- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 )

Proof

Step Hyp Ref Expression
1 eluz2
 |-  ( N e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) )
2 znn0sub
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( N - M ) e. NN0 ) )
3 2 biimp3a
 |-  ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( N - M ) e. NN0 )
4 1 3 sylbi
 |-  ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 )