Metamath Proof Explorer


Theorem uzp1

Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion uzp1
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 uzm1
 |-  ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) )
2 eluzp1p1
 |-  ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) )
3 eluzelcn
 |-  ( N e. ( ZZ>= ` M ) -> N e. CC )
4 ax-1cn
 |-  1 e. CC
5 npcan
 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N )
6 3 4 5 sylancl
 |-  ( N e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) = N )
7 6 eleq1d
 |-  ( N e. ( ZZ>= ` M ) -> ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) <-> N e. ( ZZ>= ` ( M + 1 ) ) ) )
8 2 7 syl5ib
 |-  ( N e. ( ZZ>= ` M ) -> ( ( N - 1 ) e. ( ZZ>= ` M ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) )
9 8 orim2d
 |-  ( N e. ( ZZ>= ` M ) -> ( ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) )
10 1 9 mpd
 |-  ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) )