Step |
Hyp |
Ref |
Expression |
1 |
|
uzm1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
2 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
3 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` M ) -> N e. CC ) |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
6 |
3 4 5
|
sylancl |
|- ( N e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) = N ) |
7 |
6
|
eleq1d |
|- ( N e. ( ZZ>= ` M ) -> ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
8 |
2 7
|
syl5ib |
|- ( N e. ( ZZ>= ` M ) -> ( ( N - 1 ) e. ( ZZ>= ` M ) -> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
9 |
8
|
orim2d |
|- ( N e. ( ZZ>= ` M ) -> ( ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) ) |
10 |
1 9
|
mpd |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |