| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
|- C e. ZZ |
| 2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
| 3 |
|
uzrdg.1 |
|- A e. _V |
| 4 |
|
uzrdg.2 |
|- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
| 5 |
|
uzrdg.3 |
|- S = ran R |
| 6 |
1 2 3 4 5
|
uzrdgfni |
|- S Fn ( ZZ>= ` C ) |
| 7 |
|
fnfun |
|- ( S Fn ( ZZ>= ` C ) -> Fun S ) |
| 8 |
6 7
|
ax-mp |
|- Fun S |
| 9 |
4
|
fveq1i |
|- ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) |
| 10 |
|
opex |
|- <. C , A >. e. _V |
| 11 |
|
fr0g |
|- ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. ) |
| 12 |
10 11
|
ax-mp |
|- ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. |
| 13 |
9 12
|
eqtri |
|- ( R ` (/) ) = <. C , A >. |
| 14 |
|
frfnom |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
| 15 |
4
|
fneq1i |
|- ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) |
| 16 |
14 15
|
mpbir |
|- R Fn _om |
| 17 |
|
peano1 |
|- (/) e. _om |
| 18 |
|
fnfvelrn |
|- ( ( R Fn _om /\ (/) e. _om ) -> ( R ` (/) ) e. ran R ) |
| 19 |
16 17 18
|
mp2an |
|- ( R ` (/) ) e. ran R |
| 20 |
13 19
|
eqeltrri |
|- <. C , A >. e. ran R |
| 21 |
20 5
|
eleqtrri |
|- <. C , A >. e. S |
| 22 |
|
funopfv |
|- ( Fun S -> ( <. C , A >. e. S -> ( S ` C ) = A ) ) |
| 23 |
8 21 22
|
mp2 |
|- ( S ` C ) = A |