Metamath Proof Explorer


Theorem uzrdg0i

Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1
|- C e. ZZ
om2uz.2
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om )
uzrdg.1
|- A e. _V
uzrdg.2
|- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om )
uzrdg.3
|- S = ran R
Assertion uzrdg0i
|- ( S ` C ) = A

Proof

Step Hyp Ref Expression
1 om2uz.1
 |-  C e. ZZ
2 om2uz.2
 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om )
3 uzrdg.1
 |-  A e. _V
4 uzrdg.2
 |-  R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om )
5 uzrdg.3
 |-  S = ran R
6 1 2 3 4 5 uzrdgfni
 |-  S Fn ( ZZ>= ` C )
7 fnfun
 |-  ( S Fn ( ZZ>= ` C ) -> Fun S )
8 6 7 ax-mp
 |-  Fun S
9 4 fveq1i
 |-  ( R ` (/) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) )
10 opex
 |-  <. C , A >. e. _V
11 fr0g
 |-  ( <. C , A >. e. _V -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >. )
12 10 11 ax-mp
 |-  ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` (/) ) = <. C , A >.
13 9 12 eqtri
 |-  ( R ` (/) ) = <. C , A >.
14 frfnom
 |-  ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om
15 4 fneq1i
 |-  ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om )
16 14 15 mpbir
 |-  R Fn _om
17 peano1
 |-  (/) e. _om
18 fnfvelrn
 |-  ( ( R Fn _om /\ (/) e. _om ) -> ( R ` (/) ) e. ran R )
19 16 17 18 mp2an
 |-  ( R ` (/) ) e. ran R
20 13 19 eqeltrri
 |-  <. C , A >. e. ran R
21 20 5 eleqtrri
 |-  <. C , A >. e. S
22 funopfv
 |-  ( Fun S -> ( <. C , A >. e. S -> ( S ` C ) = A ) )
23 8 21 22 mp2
 |-  ( S ` C ) = A