Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
|- C e. ZZ |
2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
3 |
|
uzrdg.1 |
|- A e. _V |
4 |
|
uzrdg.2 |
|- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
5 |
|
uzrdg.3 |
|- S = ran R |
6 |
5
|
eleq2i |
|- ( z e. S <-> z e. ran R ) |
7 |
|
frfnom |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
8 |
4
|
fneq1i |
|- ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) |
9 |
7 8
|
mpbir |
|- R Fn _om |
10 |
|
fvelrnb |
|- ( R Fn _om -> ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) ) |
11 |
9 10
|
ax-mp |
|- ( z e. ran R <-> E. w e. _om ( R ` w ) = z ) |
12 |
6 11
|
bitri |
|- ( z e. S <-> E. w e. _om ( R ` w ) = z ) |
13 |
1 2 3 4
|
om2uzrdg |
|- ( w e. _om -> ( R ` w ) = <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. ) |
14 |
1 2
|
om2uzuzi |
|- ( w e. _om -> ( G ` w ) e. ( ZZ>= ` C ) ) |
15 |
|
fvex |
|- ( 2nd ` ( R ` w ) ) e. _V |
16 |
|
opelxpi |
|- ( ( ( G ` w ) e. ( ZZ>= ` C ) /\ ( 2nd ` ( R ` w ) ) e. _V ) -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( ( ZZ>= ` C ) X. _V ) ) |
17 |
14 15 16
|
sylancl |
|- ( w e. _om -> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. e. ( ( ZZ>= ` C ) X. _V ) ) |
18 |
13 17
|
eqeltrd |
|- ( w e. _om -> ( R ` w ) e. ( ( ZZ>= ` C ) X. _V ) ) |
19 |
|
eleq1 |
|- ( ( R ` w ) = z -> ( ( R ` w ) e. ( ( ZZ>= ` C ) X. _V ) <-> z e. ( ( ZZ>= ` C ) X. _V ) ) ) |
20 |
18 19
|
syl5ibcom |
|- ( w e. _om -> ( ( R ` w ) = z -> z e. ( ( ZZ>= ` C ) X. _V ) ) ) |
21 |
20
|
rexlimiv |
|- ( E. w e. _om ( R ` w ) = z -> z e. ( ( ZZ>= ` C ) X. _V ) ) |
22 |
12 21
|
sylbi |
|- ( z e. S -> z e. ( ( ZZ>= ` C ) X. _V ) ) |
23 |
22
|
ssriv |
|- S C_ ( ( ZZ>= ` C ) X. _V ) |
24 |
|
xpss |
|- ( ( ZZ>= ` C ) X. _V ) C_ ( _V X. _V ) |
25 |
23 24
|
sstri |
|- S C_ ( _V X. _V ) |
26 |
|
df-rel |
|- ( Rel S <-> S C_ ( _V X. _V ) ) |
27 |
25 26
|
mpbir |
|- Rel S |
28 |
|
fvex |
|- ( 2nd ` ( R ` ( `' G ` v ) ) ) e. _V |
29 |
|
eqeq2 |
|- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( z = w <-> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) |
30 |
29
|
imbi2d |
|- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( ( <. v , z >. e. S -> z = w ) <-> ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) |
31 |
30
|
albidv |
|- ( w = ( 2nd ` ( R ` ( `' G ` v ) ) ) -> ( A. z ( <. v , z >. e. S -> z = w ) <-> A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) ) ) |
32 |
28 31
|
spcev |
|- ( A. z ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) -> E. w A. z ( <. v , z >. e. S -> z = w ) ) |
33 |
5
|
eleq2i |
|- ( <. v , z >. e. S <-> <. v , z >. e. ran R ) |
34 |
|
fvelrnb |
|- ( R Fn _om -> ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) ) |
35 |
9 34
|
ax-mp |
|- ( <. v , z >. e. ran R <-> E. w e. _om ( R ` w ) = <. v , z >. ) |
36 |
33 35
|
bitri |
|- ( <. v , z >. e. S <-> E. w e. _om ( R ` w ) = <. v , z >. ) |
37 |
13
|
eqeq1d |
|- ( w e. _om -> ( ( R ` w ) = <. v , z >. <-> <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. ) ) |
38 |
|
fvex |
|- ( G ` w ) e. _V |
39 |
38 15
|
opth1 |
|- ( <. ( G ` w ) , ( 2nd ` ( R ` w ) ) >. = <. v , z >. -> ( G ` w ) = v ) |
40 |
37 39
|
syl6bi |
|- ( w e. _om -> ( ( R ` w ) = <. v , z >. -> ( G ` w ) = v ) ) |
41 |
1 2
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` C ) |
42 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ w e. _om ) -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
43 |
41 42
|
mpan |
|- ( w e. _om -> ( ( G ` w ) = v -> ( `' G ` v ) = w ) ) |
44 |
40 43
|
syld |
|- ( w e. _om -> ( ( R ` w ) = <. v , z >. -> ( `' G ` v ) = w ) ) |
45 |
|
2fveq3 |
|- ( ( `' G ` v ) = w -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) |
46 |
44 45
|
syl6 |
|- ( w e. _om -> ( ( R ` w ) = <. v , z >. -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) ) |
47 |
46
|
imp |
|- ( ( w e. _om /\ ( R ` w ) = <. v , z >. ) -> ( 2nd ` ( R ` ( `' G ` v ) ) ) = ( 2nd ` ( R ` w ) ) ) |
48 |
|
vex |
|- v e. _V |
49 |
|
vex |
|- z e. _V |
50 |
48 49
|
op2ndd |
|- ( ( R ` w ) = <. v , z >. -> ( 2nd ` ( R ` w ) ) = z ) |
51 |
50
|
adantl |
|- ( ( w e. _om /\ ( R ` w ) = <. v , z >. ) -> ( 2nd ` ( R ` w ) ) = z ) |
52 |
47 51
|
eqtr2d |
|- ( ( w e. _om /\ ( R ` w ) = <. v , z >. ) -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
53 |
52
|
rexlimiva |
|- ( E. w e. _om ( R ` w ) = <. v , z >. -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
54 |
36 53
|
sylbi |
|- ( <. v , z >. e. S -> z = ( 2nd ` ( R ` ( `' G ` v ) ) ) ) |
55 |
32 54
|
mpg |
|- E. w A. z ( <. v , z >. e. S -> z = w ) |
56 |
55
|
ax-gen |
|- A. v E. w A. z ( <. v , z >. e. S -> z = w ) |
57 |
|
dffun5 |
|- ( Fun S <-> ( Rel S /\ A. v E. w A. z ( <. v , z >. e. S -> z = w ) ) ) |
58 |
27 56 57
|
mpbir2an |
|- Fun S |
59 |
|
dmss |
|- ( S C_ ( ( ZZ>= ` C ) X. _V ) -> dom S C_ dom ( ( ZZ>= ` C ) X. _V ) ) |
60 |
23 59
|
ax-mp |
|- dom S C_ dom ( ( ZZ>= ` C ) X. _V ) |
61 |
|
dmxpss |
|- dom ( ( ZZ>= ` C ) X. _V ) C_ ( ZZ>= ` C ) |
62 |
60 61
|
sstri |
|- dom S C_ ( ZZ>= ` C ) |
63 |
1 2 3 4
|
uzrdglem |
|- ( v e. ( ZZ>= ` C ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. ran R ) |
64 |
63 5
|
eleqtrrdi |
|- ( v e. ( ZZ>= ` C ) -> <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S ) |
65 |
48 28
|
opeldm |
|- ( <. v , ( 2nd ` ( R ` ( `' G ` v ) ) ) >. e. S -> v e. dom S ) |
66 |
64 65
|
syl |
|- ( v e. ( ZZ>= ` C ) -> v e. dom S ) |
67 |
66
|
ssriv |
|- ( ZZ>= ` C ) C_ dom S |
68 |
62 67
|
eqssi |
|- dom S = ( ZZ>= ` C ) |
69 |
|
df-fn |
|- ( S Fn ( ZZ>= ` C ) <-> ( Fun S /\ dom S = ( ZZ>= ` C ) ) ) |
70 |
58 68 69
|
mpbir2an |
|- S Fn ( ZZ>= ` C ) |