Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
|- C e. ZZ |
2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
3 |
|
uzrdg.1 |
|- A e. _V |
4 |
|
uzrdg.2 |
|- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
5 |
1 2
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` C ) |
6 |
|
f1ocnvdm |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( `' G ` B ) e. _om ) |
7 |
5 6
|
mpan |
|- ( B e. ( ZZ>= ` C ) -> ( `' G ` B ) e. _om ) |
8 |
1 2 3 4
|
om2uzrdg |
|- ( ( `' G ` B ) e. _om -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
9 |
7 8
|
syl |
|- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
10 |
|
f1ocnvfv2 |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( G ` ( `' G ` B ) ) = B ) |
11 |
5 10
|
mpan |
|- ( B e. ( ZZ>= ` C ) -> ( G ` ( `' G ` B ) ) = B ) |
12 |
11
|
opeq1d |
|- ( B e. ( ZZ>= ` C ) -> <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
13 |
9 12
|
eqtrd |
|- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
14 |
|
frfnom |
|- ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om |
15 |
4
|
fneq1i |
|- ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om ) |
16 |
14 15
|
mpbir |
|- R Fn _om |
17 |
|
fnfvelrn |
|- ( ( R Fn _om /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) e. ran R ) |
18 |
16 7 17
|
sylancr |
|- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) e. ran R ) |
19 |
13 18
|
eqeltrrd |
|- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |