Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
|- C e. ZZ |
2 |
|
om2uz.2 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
3 |
|
uzrdg.1 |
|- A e. _V |
4 |
|
uzrdg.2 |
|- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
5 |
|
uzrdg.3 |
|- S = ran R |
6 |
1 2 3 4 5
|
uzrdgfni |
|- S Fn ( ZZ>= ` C ) |
7 |
|
fnfun |
|- ( S Fn ( ZZ>= ` C ) -> Fun S ) |
8 |
6 7
|
ax-mp |
|- Fun S |
9 |
|
peano2uz |
|- ( B e. ( ZZ>= ` C ) -> ( B + 1 ) e. ( ZZ>= ` C ) ) |
10 |
1 2 3 4
|
uzrdglem |
|- ( ( B + 1 ) e. ( ZZ>= ` C ) -> <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. ran R ) |
11 |
9 10
|
syl |
|- ( B e. ( ZZ>= ` C ) -> <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. ran R ) |
12 |
11 5
|
eleqtrrdi |
|- ( B e. ( ZZ>= ` C ) -> <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. S ) |
13 |
|
funopfv |
|- ( Fun S -> ( <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. S -> ( S ` ( B + 1 ) ) = ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) ) ) |
14 |
8 12 13
|
mpsyl |
|- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) ) |
15 |
1 2
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` C ) |
16 |
|
f1ocnvdm |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( `' G ` B ) e. _om ) |
17 |
15 16
|
mpan |
|- ( B e. ( ZZ>= ` C ) -> ( `' G ` B ) e. _om ) |
18 |
|
peano2 |
|- ( ( `' G ` B ) e. _om -> suc ( `' G ` B ) e. _om ) |
19 |
17 18
|
syl |
|- ( B e. ( ZZ>= ` C ) -> suc ( `' G ` B ) e. _om ) |
20 |
1 2
|
om2uzsuci |
|- ( ( `' G ` B ) e. _om -> ( G ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) + 1 ) ) |
21 |
17 20
|
syl |
|- ( B e. ( ZZ>= ` C ) -> ( G ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) + 1 ) ) |
22 |
|
f1ocnvfv2 |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( G ` ( `' G ` B ) ) = B ) |
23 |
15 22
|
mpan |
|- ( B e. ( ZZ>= ` C ) -> ( G ` ( `' G ` B ) ) = B ) |
24 |
23
|
oveq1d |
|- ( B e. ( ZZ>= ` C ) -> ( ( G ` ( `' G ` B ) ) + 1 ) = ( B + 1 ) ) |
25 |
21 24
|
eqtrd |
|- ( B e. ( ZZ>= ` C ) -> ( G ` suc ( `' G ` B ) ) = ( B + 1 ) ) |
26 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ suc ( `' G ` B ) e. _om ) -> ( ( G ` suc ( `' G ` B ) ) = ( B + 1 ) -> ( `' G ` ( B + 1 ) ) = suc ( `' G ` B ) ) ) |
27 |
15 26
|
mpan |
|- ( suc ( `' G ` B ) e. _om -> ( ( G ` suc ( `' G ` B ) ) = ( B + 1 ) -> ( `' G ` ( B + 1 ) ) = suc ( `' G ` B ) ) ) |
28 |
19 25 27
|
sylc |
|- ( B e. ( ZZ>= ` C ) -> ( `' G ` ( B + 1 ) ) = suc ( `' G ` B ) ) |
29 |
28
|
fveq2d |
|- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` ( B + 1 ) ) ) = ( R ` suc ( `' G ` B ) ) ) |
30 |
29
|
fveq2d |
|- ( B e. ( ZZ>= ` C ) -> ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) ) |
31 |
14 30
|
eqtrd |
|- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) ) |
32 |
|
frsuc |
|- ( ( `' G ` B ) e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) ) |
33 |
4
|
fveq1i |
|- ( R ` suc ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) |
34 |
4
|
fveq1i |
|- ( R ` ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) |
35 |
34
|
fveq2i |
|- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) |
36 |
32 33 35
|
3eqtr4g |
|- ( ( `' G ` B ) e. _om -> ( R ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) ) |
37 |
1 2 3 4
|
om2uzrdg |
|- ( ( `' G ` B ) e. _om -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
38 |
37
|
fveq2d |
|- ( ( `' G ` B ) e. _om -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) ) |
39 |
|
df-ov |
|- ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
40 |
38 39
|
eqtr4di |
|- ( ( `' G ` B ) e. _om -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
41 |
36 40
|
eqtrd |
|- ( ( `' G ` B ) e. _om -> ( R ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
42 |
|
fvex |
|- ( G ` ( `' G ` B ) ) e. _V |
43 |
|
fvex |
|- ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V |
44 |
|
oveq1 |
|- ( z = ( G ` ( `' G ` B ) ) -> ( z + 1 ) = ( ( G ` ( `' G ` B ) ) + 1 ) ) |
45 |
|
oveq1 |
|- ( z = ( G ` ( `' G ` B ) ) -> ( z F w ) = ( ( G ` ( `' G ` B ) ) F w ) ) |
46 |
44 45
|
opeq12d |
|- ( z = ( G ` ( `' G ` B ) ) -> <. ( z + 1 ) , ( z F w ) >. = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F w ) >. ) |
47 |
|
oveq2 |
|- ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> ( ( G ` ( `' G ` B ) ) F w ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
48 |
47
|
opeq2d |
|- ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F w ) >. = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
49 |
|
oveq1 |
|- ( x = z -> ( x + 1 ) = ( z + 1 ) ) |
50 |
|
oveq1 |
|- ( x = z -> ( x F y ) = ( z F y ) ) |
51 |
49 50
|
opeq12d |
|- ( x = z -> <. ( x + 1 ) , ( x F y ) >. = <. ( z + 1 ) , ( z F y ) >. ) |
52 |
|
oveq2 |
|- ( y = w -> ( z F y ) = ( z F w ) ) |
53 |
52
|
opeq2d |
|- ( y = w -> <. ( z + 1 ) , ( z F y ) >. = <. ( z + 1 ) , ( z F w ) >. ) |
54 |
51 53
|
cbvmpov |
|- ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) = ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( z F w ) >. ) |
55 |
|
opex |
|- <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. e. _V |
56 |
46 48 54 55
|
ovmpo |
|- ( ( ( G ` ( `' G ` B ) ) e. _V /\ ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V ) -> ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
57 |
42 43 56
|
mp2an |
|- ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. |
58 |
41 57
|
eqtrdi |
|- ( ( `' G ` B ) e. _om -> ( R ` suc ( `' G ` B ) ) = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
59 |
58
|
fveq2d |
|- ( ( `' G ` B ) e. _om -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( 2nd ` <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) ) |
60 |
|
ovex |
|- ( ( G ` ( `' G ` B ) ) + 1 ) e. _V |
61 |
|
ovex |
|- ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) e. _V |
62 |
60 61
|
op2nd |
|- ( 2nd ` <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) |
63 |
59 62
|
eqtrdi |
|- ( ( `' G ` B ) e. _om -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
64 |
17 63
|
syl |
|- ( B e. ( ZZ>= ` C ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
65 |
1 2 3 4
|
uzrdglem |
|- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |
66 |
65 5
|
eleqtrrdi |
|- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S ) |
67 |
|
funopfv |
|- ( Fun S -> ( <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
68 |
8 66 67
|
mpsyl |
|- ( B e. ( ZZ>= ` C ) -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) |
69 |
68
|
eqcomd |
|- ( B e. ( ZZ>= ` C ) -> ( 2nd ` ( R ` ( `' G ` B ) ) ) = ( S ` B ) ) |
70 |
23 69
|
oveq12d |
|- ( B e. ( ZZ>= ` C ) -> ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( B F ( S ` B ) ) ) |
71 |
31 64 70
|
3eqtrd |
|- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( B F ( S ` B ) ) ) |