| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzrdgxfr.1 |  |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , A ) |` _om ) | 
						
							| 2 |  | uzrdgxfr.2 |  |-  H = ( rec ( ( x e. _V |-> ( x + 1 ) ) , B ) |` _om ) | 
						
							| 3 |  | uzrdgxfr.3 |  |-  A e. ZZ | 
						
							| 4 |  | uzrdgxfr.4 |  |-  B e. ZZ | 
						
							| 5 |  | fveq2 |  |-  ( y = (/) -> ( G ` y ) = ( G ` (/) ) ) | 
						
							| 6 |  | fveq2 |  |-  ( y = (/) -> ( H ` y ) = ( H ` (/) ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( y = (/) -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` (/) ) + ( A - B ) ) ) | 
						
							| 8 | 5 7 | eqeq12d |  |-  ( y = (/) -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` (/) ) = ( ( H ` (/) ) + ( A - B ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( y = k -> ( G ` y ) = ( G ` k ) ) | 
						
							| 10 |  | fveq2 |  |-  ( y = k -> ( H ` y ) = ( H ` k ) ) | 
						
							| 11 | 10 | oveq1d |  |-  ( y = k -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` k ) + ( A - B ) ) ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( y = k -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` k ) = ( ( H ` k ) + ( A - B ) ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( y = suc k -> ( G ` y ) = ( G ` suc k ) ) | 
						
							| 14 |  | fveq2 |  |-  ( y = suc k -> ( H ` y ) = ( H ` suc k ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( y = suc k -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` suc k ) + ( A - B ) ) ) | 
						
							| 16 | 13 15 | eqeq12d |  |-  ( y = suc k -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( y = N -> ( G ` y ) = ( G ` N ) ) | 
						
							| 18 |  | fveq2 |  |-  ( y = N -> ( H ` y ) = ( H ` N ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( y = N -> ( ( H ` y ) + ( A - B ) ) = ( ( H ` N ) + ( A - B ) ) ) | 
						
							| 20 | 17 19 | eqeq12d |  |-  ( y = N -> ( ( G ` y ) = ( ( H ` y ) + ( A - B ) ) <-> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) ) | 
						
							| 21 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 22 | 4 21 | ax-mp |  |-  B e. CC | 
						
							| 23 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 24 | 3 23 | ax-mp |  |-  A e. CC | 
						
							| 25 | 22 24 | pncan3i |  |-  ( B + ( A - B ) ) = A | 
						
							| 26 | 4 2 | om2uz0i |  |-  ( H ` (/) ) = B | 
						
							| 27 | 26 | oveq1i |  |-  ( ( H ` (/) ) + ( A - B ) ) = ( B + ( A - B ) ) | 
						
							| 28 | 3 1 | om2uz0i |  |-  ( G ` (/) ) = A | 
						
							| 29 | 25 27 28 | 3eqtr4ri |  |-  ( G ` (/) ) = ( ( H ` (/) ) + ( A - B ) ) | 
						
							| 30 |  | oveq1 |  |-  ( ( G ` k ) = ( ( H ` k ) + ( A - B ) ) -> ( ( G ` k ) + 1 ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) | 
						
							| 31 | 3 1 | om2uzsuci |  |-  ( k e. _om -> ( G ` suc k ) = ( ( G ` k ) + 1 ) ) | 
						
							| 32 | 4 2 | om2uzsuci |  |-  ( k e. _om -> ( H ` suc k ) = ( ( H ` k ) + 1 ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( k e. _om -> ( ( H ` suc k ) + ( A - B ) ) = ( ( ( H ` k ) + 1 ) + ( A - B ) ) ) | 
						
							| 34 | 4 2 | om2uzuzi |  |-  ( k e. _om -> ( H ` k ) e. ( ZZ>= ` B ) ) | 
						
							| 35 |  | eluzelz |  |-  ( ( H ` k ) e. ( ZZ>= ` B ) -> ( H ` k ) e. ZZ ) | 
						
							| 36 | 34 35 | syl |  |-  ( k e. _om -> ( H ` k ) e. ZZ ) | 
						
							| 37 | 36 | zcnd |  |-  ( k e. _om -> ( H ` k ) e. CC ) | 
						
							| 38 |  | ax-1cn |  |-  1 e. CC | 
						
							| 39 | 24 22 | subcli |  |-  ( A - B ) e. CC | 
						
							| 40 |  | add32 |  |-  ( ( ( H ` k ) e. CC /\ 1 e. CC /\ ( A - B ) e. CC ) -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) | 
						
							| 41 | 38 39 40 | mp3an23 |  |-  ( ( H ` k ) e. CC -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) | 
						
							| 42 | 37 41 | syl |  |-  ( k e. _om -> ( ( ( H ` k ) + 1 ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) | 
						
							| 43 | 33 42 | eqtrd |  |-  ( k e. _om -> ( ( H ` suc k ) + ( A - B ) ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) | 
						
							| 44 | 31 43 | eqeq12d |  |-  ( k e. _om -> ( ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) <-> ( ( G ` k ) + 1 ) = ( ( ( H ` k ) + ( A - B ) ) + 1 ) ) ) | 
						
							| 45 | 30 44 | imbitrrid |  |-  ( k e. _om -> ( ( G ` k ) = ( ( H ` k ) + ( A - B ) ) -> ( G ` suc k ) = ( ( H ` suc k ) + ( A - B ) ) ) ) | 
						
							| 46 | 8 12 16 20 29 45 | finds |  |-  ( N e. _om -> ( G ` N ) = ( ( H ` N ) + ( A - B ) ) ) |