Metamath Proof Explorer


Theorem uzred

Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzred.1
|- Z = ( ZZ>= ` M )
uzred.2
|- ( ph -> A e. Z )
Assertion uzred
|- ( ph -> A e. RR )

Proof

Step Hyp Ref Expression
1 uzred.1
 |-  Z = ( ZZ>= ` M )
2 uzred.2
 |-  ( ph -> A e. Z )
3 zssre
 |-  ZZ C_ RR
4 1 2 eluzelz2d
 |-  ( ph -> A e. ZZ )
5 3 4 sselid
 |-  ( ph -> A e. RR )