Metamath Proof Explorer
Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
uzred.1 |
|- Z = ( ZZ>= ` M ) |
|
|
uzred.2 |
|- ( ph -> A e. Z ) |
|
Assertion |
uzred |
|- ( ph -> A e. RR ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uzred.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
uzred.2 |
|- ( ph -> A e. Z ) |
3 |
|
zssre |
|- ZZ C_ RR |
4 |
1 2
|
eluzelz2d |
|- ( ph -> A e. ZZ ) |
5 |
3 4
|
sselid |
|- ( ph -> A e. RR ) |