Metamath Proof Explorer


Theorem uzsinds

Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses uzsinds.1
|- ( x = y -> ( ph <-> ps ) )
uzsinds.2
|- ( x = N -> ( ph <-> ch ) )
uzsinds.3
|- ( x e. ( ZZ>= ` M ) -> ( A. y e. ( M ... ( x - 1 ) ) ps -> ph ) )
Assertion uzsinds
|- ( N e. ( ZZ>= ` M ) -> ch )

Proof

Step Hyp Ref Expression
1 uzsinds.1
 |-  ( x = y -> ( ph <-> ps ) )
2 uzsinds.2
 |-  ( x = N -> ( ph <-> ch ) )
3 uzsinds.3
 |-  ( x e. ( ZZ>= ` M ) -> ( A. y e. ( M ... ( x - 1 ) ) ps -> ph ) )
4 ltweuz
 |-  < We ( ZZ>= ` M )
5 fvex
 |-  ( ZZ>= ` M ) e. _V
6 exse
 |-  ( ( ZZ>= ` M ) e. _V -> < Se ( ZZ>= ` M ) )
7 5 6 ax-mp
 |-  < Se ( ZZ>= ` M )
8 preduz
 |-  ( x e. ( ZZ>= ` M ) -> Pred ( < , ( ZZ>= ` M ) , x ) = ( M ... ( x - 1 ) ) )
9 8 raleqdv
 |-  ( x e. ( ZZ>= ` M ) -> ( A. y e. Pred ( < , ( ZZ>= ` M ) , x ) ps <-> A. y e. ( M ... ( x - 1 ) ) ps ) )
10 9 3 sylbid
 |-  ( x e. ( ZZ>= ` M ) -> ( A. y e. Pred ( < , ( ZZ>= ` M ) , x ) ps -> ph ) )
11 4 7 1 2 10 wfis3
 |-  ( N e. ( ZZ>= ` M ) -> ch )