Step |
Hyp |
Ref |
Expression |
1 |
|
uzsinds.1 |
|- ( x = y -> ( ph <-> ps ) ) |
2 |
|
uzsinds.2 |
|- ( x = N -> ( ph <-> ch ) ) |
3 |
|
uzsinds.3 |
|- ( x e. ( ZZ>= ` M ) -> ( A. y e. ( M ... ( x - 1 ) ) ps -> ph ) ) |
4 |
|
ltweuz |
|- < We ( ZZ>= ` M ) |
5 |
|
fvex |
|- ( ZZ>= ` M ) e. _V |
6 |
|
exse |
|- ( ( ZZ>= ` M ) e. _V -> < Se ( ZZ>= ` M ) ) |
7 |
5 6
|
ax-mp |
|- < Se ( ZZ>= ` M ) |
8 |
|
preduz |
|- ( x e. ( ZZ>= ` M ) -> Pred ( < , ( ZZ>= ` M ) , x ) = ( M ... ( x - 1 ) ) ) |
9 |
8
|
raleqdv |
|- ( x e. ( ZZ>= ` M ) -> ( A. y e. Pred ( < , ( ZZ>= ` M ) , x ) ps <-> A. y e. ( M ... ( x - 1 ) ) ps ) ) |
10 |
9 3
|
sylbid |
|- ( x e. ( ZZ>= ` M ) -> ( A. y e. Pred ( < , ( ZZ>= ` M ) , x ) ps -> ph ) ) |
11 |
4 7 1 2 10
|
wfis3 |
|- ( N e. ( ZZ>= ` M ) -> ch ) |