Metamath Proof Explorer


Theorem uzsscn2

Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypothesis uzsscn2.1
|- Z = ( ZZ>= ` M )
Assertion uzsscn2
|- Z C_ CC

Proof

Step Hyp Ref Expression
1 uzsscn2.1
 |-  Z = ( ZZ>= ` M )
2 uzsscn
 |-  ( ZZ>= ` M ) C_ CC
3 1 2 eqsstri
 |-  Z C_ CC