Metamath Proof Explorer


Theorem uzssd

Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis uzssd.1
|- ( ph -> N e. ( ZZ>= ` M ) )
Assertion uzssd
|- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) )

Proof

Step Hyp Ref Expression
1 uzssd.1
 |-  ( ph -> N e. ( ZZ>= ` M ) )
2 uzss
 |-  ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) )
3 1 2 syl
 |-  ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) )