Metamath Proof Explorer


Theorem uzssd2

Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzssd2.1
|- Z = ( ZZ>= ` M )
uzssd2.2
|- ( ph -> N e. Z )
Assertion uzssd2
|- ( ph -> ( ZZ>= ` N ) C_ Z )

Proof

Step Hyp Ref Expression
1 uzssd2.1
 |-  Z = ( ZZ>= ` M )
2 uzssd2.2
 |-  ( ph -> N e. Z )
3 2 1 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` M ) )
4 3 uzssd
 |-  ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) )
5 4 1 sseqtrrdi
 |-  ( ph -> ( ZZ>= ` N ) C_ Z )