| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( L e. NN0 /\ N e. ( ZZ>= ` L ) ) -> L e. NN0 ) |
| 2 |
|
eluznn0 |
|- ( ( L e. NN0 /\ N e. ( ZZ>= ` L ) ) -> N e. NN0 ) |
| 3 |
|
eluzle |
|- ( N e. ( ZZ>= ` L ) -> L <_ N ) |
| 4 |
3
|
adantl |
|- ( ( L e. NN0 /\ N e. ( ZZ>= ` L ) ) -> L <_ N ) |
| 5 |
|
elfz2nn0 |
|- ( L e. ( 0 ... N ) <-> ( L e. NN0 /\ N e. NN0 /\ L <_ N ) ) |
| 6 |
1 2 4 5
|
syl3anbrc |
|- ( ( L e. NN0 /\ N e. ( ZZ>= ` L ) ) -> L e. ( 0 ... N ) ) |
| 7 |
|
fznn0sub2 |
|- ( L e. ( 0 ... N ) -> ( N - L ) e. ( 0 ... N ) ) |
| 8 |
6 7
|
syl |
|- ( ( L e. NN0 /\ N e. ( ZZ>= ` L ) ) -> ( N - L ) e. ( 0 ... N ) ) |