Metamath Proof Explorer


Theorem uztric

Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jun-2013)

Ref Expression
Assertion uztric
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) )

Proof

Step Hyp Ref Expression
1 zre
 |-  ( M e. ZZ -> M e. RR )
2 zre
 |-  ( N e. ZZ -> N e. RR )
3 letric
 |-  ( ( M e. RR /\ N e. RR ) -> ( M <_ N \/ N <_ M ) )
4 1 2 3 syl2an
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N \/ N <_ M ) )
5 eluz
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) )
6 eluz
 |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( M e. ( ZZ>= ` N ) <-> N <_ M ) )
7 6 ancoms
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ( ZZ>= ` N ) <-> N <_ M ) )
8 5 7 orbi12d
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) <-> ( M <_ N \/ N <_ M ) ) )
9 4 8 mpbird
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) \/ M e. ( ZZ>= ` N ) ) )