Metamath Proof Explorer


Theorem uztrn2

Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis uztrn2.1
|- Z = ( ZZ>= ` K )
Assertion uztrn2
|- ( ( N e. Z /\ M e. ( ZZ>= ` N ) ) -> M e. Z )

Proof

Step Hyp Ref Expression
1 uztrn2.1
 |-  Z = ( ZZ>= ` K )
2 1 eleq2i
 |-  ( N e. Z <-> N e. ( ZZ>= ` K ) )
3 uztrn
 |-  ( ( M e. ( ZZ>= ` N ) /\ N e. ( ZZ>= ` K ) ) -> M e. ( ZZ>= ` K ) )
4 3 ancoms
 |-  ( ( N e. ( ZZ>= ` K ) /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` K ) )
5 2 4 sylanb
 |-  ( ( N e. Z /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` K ) )
6 5 1 eleqtrrdi
 |-  ( ( N e. Z /\ M e. ( ZZ>= ` N ) ) -> M e. Z )