Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uztrn2.1 | |- Z = ( ZZ>= ` K ) |
|
Assertion | uztrn2 | |- ( ( N e. Z /\ M e. ( ZZ>= ` N ) ) -> M e. Z ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uztrn2.1 | |- Z = ( ZZ>= ` K ) |
|
2 | 1 | eleq2i | |- ( N e. Z <-> N e. ( ZZ>= ` K ) ) |
3 | uztrn | |- ( ( M e. ( ZZ>= ` N ) /\ N e. ( ZZ>= ` K ) ) -> M e. ( ZZ>= ` K ) ) |
|
4 | 3 | ancoms | |- ( ( N e. ( ZZ>= ` K ) /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` K ) ) |
5 | 2 4 | sylanb | |- ( ( N e. Z /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` K ) ) |
6 | 5 1 | eleqtrrdi | |- ( ( N e. Z /\ M e. ( ZZ>= ` N ) ) -> M e. Z ) |