Metamath Proof Explorer


Theorem uzuzle23

Description: An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018)

Ref Expression
Assertion uzuzle23
|- ( A e. ( ZZ>= ` 3 ) -> A e. ( ZZ>= ` 2 ) )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 2re
 |-  2 e. RR
3 3re
 |-  3 e. RR
4 2lt3
 |-  2 < 3
5 2 3 4 ltleii
 |-  2 <_ 3
6 eluzuzle
 |-  ( ( 2 e. ZZ /\ 2 <_ 3 ) -> ( A e. ( ZZ>= ` 3 ) -> A e. ( ZZ>= ` 2 ) ) )
7 1 5 6 mp2an
 |-  ( A e. ( ZZ>= ` 3 ) -> A e. ( ZZ>= ` 2 ) )