Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | uzwo2 | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E! j e. S A. k e. S j <_ k ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
2 | zssre | |- ZZ C_ RR |
|
3 | 1 2 | sstri | |- ( ZZ>= ` M ) C_ RR |
4 | sstr | |- ( ( S C_ ( ZZ>= ` M ) /\ ( ZZ>= ` M ) C_ RR ) -> S C_ RR ) |
|
5 | 3 4 | mpan2 | |- ( S C_ ( ZZ>= ` M ) -> S C_ RR ) |
6 | uzwo | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E. j e. S A. k e. S j <_ k ) |
|
7 | lbreu | |- ( ( S C_ RR /\ E. j e. S A. k e. S j <_ k ) -> E! j e. S A. k e. S j <_ k ) |
|
8 | 5 6 7 | syl2an2r | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E! j e. S A. k e. S j <_ k ) |