Metamath Proof Explorer


Theorem uzxr

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion uzxr
|- ( A e. ( ZZ>= ` M ) -> A e. RR* )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( ZZ>= ` M ) = ( ZZ>= ` M )
2 id
 |-  ( A e. ( ZZ>= ` M ) -> A e. ( ZZ>= ` M ) )
3 1 2 uzxrd
 |-  ( A e. ( ZZ>= ` M ) -> A e. RR* )