Metamath Proof Explorer


Theorem uzxrd

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzxrd.1
|- Z = ( ZZ>= ` M )
uzxrd.2
|- ( ph -> A e. Z )
Assertion uzxrd
|- ( ph -> A e. RR* )

Proof

Step Hyp Ref Expression
1 uzxrd.1
 |-  Z = ( ZZ>= ` M )
2 uzxrd.2
 |-  ( ph -> A e. Z )
3 ressxr
 |-  RR C_ RR*
4 1 2 uzred
 |-  ( ph -> A e. RR )
5 3 4 sselid
 |-  ( ph -> A e. RR* )