| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vc0.1 |  |-  G = ( 1st ` W ) | 
						
							| 2 |  | vc0.2 |  |-  S = ( 2nd ` W ) | 
						
							| 3 |  | vc0.3 |  |-  X = ran G | 
						
							| 4 |  | vc0.4 |  |-  Z = ( GId ` G ) | 
						
							| 5 | 1 3 4 | vc0rid |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( A G Z ) = A ) | 
						
							| 6 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 7 | 6 | oveq1i |  |-  ( ( 1 + 0 ) S A ) = ( 1 S A ) | 
						
							| 8 |  | 0cn |  |-  0 e. CC | 
						
							| 9 |  | ax-1cn |  |-  1 e. CC | 
						
							| 10 | 1 2 3 | vcdir |  |-  ( ( W e. CVecOLD /\ ( 1 e. CC /\ 0 e. CC /\ A e. X ) ) -> ( ( 1 + 0 ) S A ) = ( ( 1 S A ) G ( 0 S A ) ) ) | 
						
							| 11 | 9 10 | mp3anr1 |  |-  ( ( W e. CVecOLD /\ ( 0 e. CC /\ A e. X ) ) -> ( ( 1 + 0 ) S A ) = ( ( 1 S A ) G ( 0 S A ) ) ) | 
						
							| 12 | 8 11 | mpanr1 |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 + 0 ) S A ) = ( ( 1 S A ) G ( 0 S A ) ) ) | 
						
							| 13 | 1 2 3 | vcidOLD |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) | 
						
							| 14 | 7 12 13 | 3eqtr3a |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 0 S A ) ) = A ) | 
						
							| 15 | 13 | oveq1d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 0 S A ) ) = ( A G ( 0 S A ) ) ) | 
						
							| 16 | 5 14 15 | 3eqtr2rd |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( A G ( 0 S A ) ) = ( A G Z ) ) | 
						
							| 17 | 1 2 3 | vccl |  |-  ( ( W e. CVecOLD /\ 0 e. CC /\ A e. X ) -> ( 0 S A ) e. X ) | 
						
							| 18 | 8 17 | mp3an2 |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) e. X ) | 
						
							| 19 | 1 3 4 | vczcl |  |-  ( W e. CVecOLD -> Z e. X ) | 
						
							| 20 | 19 | adantr |  |-  ( ( W e. CVecOLD /\ A e. X ) -> Z e. X ) | 
						
							| 21 |  | simpr |  |-  ( ( W e. CVecOLD /\ A e. X ) -> A e. X ) | 
						
							| 22 | 18 20 21 | 3jca |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 0 S A ) e. X /\ Z e. X /\ A e. X ) ) | 
						
							| 23 | 1 3 | vclcan |  |-  ( ( W e. CVecOLD /\ ( ( 0 S A ) e. X /\ Z e. X /\ A e. X ) ) -> ( ( A G ( 0 S A ) ) = ( A G Z ) <-> ( 0 S A ) = Z ) ) | 
						
							| 24 | 22 23 | syldan |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( A G ( 0 S A ) ) = ( A G Z ) <-> ( 0 S A ) = Z ) ) | 
						
							| 25 | 16 24 | mpbid |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) = Z ) |