| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vciOLD.1 |  |-  G = ( 1st ` W ) | 
						
							| 2 |  | vciOLD.2 |  |-  S = ( 2nd ` W ) | 
						
							| 3 |  | vciOLD.3 |  |-  X = ran G | 
						
							| 4 | 1 2 3 | vcidOLD |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) | 
						
							| 5 | 4 4 | oveq12d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 1 S A ) ) = ( A G A ) ) | 
						
							| 6 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 7 | 6 | oveq1i |  |-  ( 2 S A ) = ( ( 1 + 1 ) S A ) | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 | 1 2 3 | vcdir |  |-  ( ( W e. CVecOLD /\ ( 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) | 
						
							| 10 | 8 9 | mp3anr1 |  |-  ( ( W e. CVecOLD /\ ( 1 e. CC /\ A e. X ) ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) | 
						
							| 11 | 8 10 | mpanr1 |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 + 1 ) S A ) = ( ( 1 S A ) G ( 1 S A ) ) ) | 
						
							| 12 | 7 11 | eqtr2id |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( 1 S A ) G ( 1 S A ) ) = ( 2 S A ) ) | 
						
							| 13 | 5 12 | eqtr3d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( A G A ) = ( 2 S A ) ) |