| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vcm.1 |  |-  G = ( 1st ` W ) | 
						
							| 2 |  | vcm.2 |  |-  S = ( 2nd ` W ) | 
						
							| 3 |  | vcm.3 |  |-  X = ran G | 
						
							| 4 |  | vcm.4 |  |-  M = ( inv ` G ) | 
						
							| 5 | 1 | vcgrp |  |-  ( W e. CVecOLD -> G e. GrpOp ) | 
						
							| 6 | 5 | adantr |  |-  ( ( W e. CVecOLD /\ A e. X ) -> G e. GrpOp ) | 
						
							| 7 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 8 | 1 2 3 | vccl |  |-  ( ( W e. CVecOLD /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) | 
						
							| 9 | 7 8 | mp3an2 |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) e. X ) | 
						
							| 10 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 11 | 3 10 | grporid |  |-  ( ( G e. GrpOp /\ ( -u 1 S A ) e. X ) -> ( ( -u 1 S A ) G ( GId ` G ) ) = ( -u 1 S A ) ) | 
						
							| 12 | 6 9 11 | syl2anc |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( GId ` G ) ) = ( -u 1 S A ) ) | 
						
							| 13 |  | simpr |  |-  ( ( W e. CVecOLD /\ A e. X ) -> A e. X ) | 
						
							| 14 | 3 4 | grpoinvcl |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( M ` A ) e. X ) | 
						
							| 15 | 5 14 | sylan |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( M ` A ) e. X ) | 
						
							| 16 | 3 | grpoass |  |-  ( ( G e. GrpOp /\ ( ( -u 1 S A ) e. X /\ A e. X /\ ( M ` A ) e. X ) ) -> ( ( ( -u 1 S A ) G A ) G ( M ` A ) ) = ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) ) | 
						
							| 17 | 6 9 13 15 16 | syl13anc |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( ( -u 1 S A ) G A ) G ( M ` A ) ) = ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) ) | 
						
							| 18 | 1 2 3 | vcidOLD |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( 1 S A ) ) = ( ( -u 1 S A ) G A ) ) | 
						
							| 20 |  | ax-1cn |  |-  1 e. CC | 
						
							| 21 |  | 1pneg1e0 |  |-  ( 1 + -u 1 ) = 0 | 
						
							| 22 | 20 7 21 | addcomli |  |-  ( -u 1 + 1 ) = 0 | 
						
							| 23 | 22 | oveq1i |  |-  ( ( -u 1 + 1 ) S A ) = ( 0 S A ) | 
						
							| 24 | 1 2 3 | vcdir |  |-  ( ( W e. CVecOLD /\ ( -u 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( -u 1 + 1 ) S A ) = ( ( -u 1 S A ) G ( 1 S A ) ) ) | 
						
							| 25 | 7 24 | mp3anr1 |  |-  ( ( W e. CVecOLD /\ ( 1 e. CC /\ A e. X ) ) -> ( ( -u 1 + 1 ) S A ) = ( ( -u 1 S A ) G ( 1 S A ) ) ) | 
						
							| 26 | 20 25 | mpanr1 |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 + 1 ) S A ) = ( ( -u 1 S A ) G ( 1 S A ) ) ) | 
						
							| 27 | 1 2 3 10 | vc0 |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) = ( GId ` G ) ) | 
						
							| 28 | 23 26 27 | 3eqtr3a |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( 1 S A ) ) = ( GId ` G ) ) | 
						
							| 29 | 19 28 | eqtr3d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G A ) = ( GId ` G ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( ( -u 1 S A ) G A ) G ( M ` A ) ) = ( ( GId ` G ) G ( M ` A ) ) ) | 
						
							| 31 | 17 30 | eqtr3d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) = ( ( GId ` G ) G ( M ` A ) ) ) | 
						
							| 32 | 3 10 4 | grporinv |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( A G ( M ` A ) ) = ( GId ` G ) ) | 
						
							| 33 | 5 32 | sylan |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( A G ( M ` A ) ) = ( GId ` G ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) = ( ( -u 1 S A ) G ( GId ` G ) ) ) | 
						
							| 35 | 31 34 | eqtr3d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( GId ` G ) G ( M ` A ) ) = ( ( -u 1 S A ) G ( GId ` G ) ) ) | 
						
							| 36 | 3 10 | grpolid |  |-  ( ( G e. GrpOp /\ ( M ` A ) e. X ) -> ( ( GId ` G ) G ( M ` A ) ) = ( M ` A ) ) | 
						
							| 37 | 6 15 36 | syl2anc |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( GId ` G ) G ( M ` A ) ) = ( M ` A ) ) | 
						
							| 38 | 35 37 | eqtr3d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( GId ` G ) ) = ( M ` A ) ) | 
						
							| 39 | 12 38 | eqtr3d |  |-  ( ( W e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |