| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vc0.1 |  |-  G = ( 1st ` W ) | 
						
							| 2 |  | vc0.2 |  |-  S = ( 2nd ` W ) | 
						
							| 3 |  | vc0.3 |  |-  X = ran G | 
						
							| 4 |  | vc0.4 |  |-  Z = ( GId ` G ) | 
						
							| 5 | 1 3 4 | vczcl |  |-  ( W e. CVecOLD -> Z e. X ) | 
						
							| 6 | 5 | anim2i |  |-  ( ( A e. CC /\ W e. CVecOLD ) -> ( A e. CC /\ Z e. X ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( W e. CVecOLD /\ A e. CC ) -> ( A e. CC /\ Z e. X ) ) | 
						
							| 8 |  | 0cn |  |-  0 e. CC | 
						
							| 9 | 1 2 3 | vcass |  |-  ( ( W e. CVecOLD /\ ( A e. CC /\ 0 e. CC /\ Z e. X ) ) -> ( ( A x. 0 ) S Z ) = ( A S ( 0 S Z ) ) ) | 
						
							| 10 | 8 9 | mp3anr2 |  |-  ( ( W e. CVecOLD /\ ( A e. CC /\ Z e. X ) ) -> ( ( A x. 0 ) S Z ) = ( A S ( 0 S Z ) ) ) | 
						
							| 11 | 7 10 | syldan |  |-  ( ( W e. CVecOLD /\ A e. CC ) -> ( ( A x. 0 ) S Z ) = ( A S ( 0 S Z ) ) ) | 
						
							| 12 |  | mul01 |  |-  ( A e. CC -> ( A x. 0 ) = 0 ) | 
						
							| 13 | 12 | oveq1d |  |-  ( A e. CC -> ( ( A x. 0 ) S Z ) = ( 0 S Z ) ) | 
						
							| 14 | 1 2 3 4 | vc0 |  |-  ( ( W e. CVecOLD /\ Z e. X ) -> ( 0 S Z ) = Z ) | 
						
							| 15 | 5 14 | mpdan |  |-  ( W e. CVecOLD -> ( 0 S Z ) = Z ) | 
						
							| 16 | 13 15 | sylan9eqr |  |-  ( ( W e. CVecOLD /\ A e. CC ) -> ( ( A x. 0 ) S Z ) = Z ) | 
						
							| 17 | 15 | oveq2d |  |-  ( W e. CVecOLD -> ( A S ( 0 S Z ) ) = ( A S Z ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( W e. CVecOLD /\ A e. CC ) -> ( A S ( 0 S Z ) ) = ( A S Z ) ) | 
						
							| 19 | 11 16 18 | 3eqtr3rd |  |-  ( ( W e. CVecOLD /\ A e. CC ) -> ( A S Z ) = Z ) |