Metamath Proof Explorer


Theorem vczcl

Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses vczcl.1
|- G = ( 1st ` W )
vczcl.2
|- X = ran G
vczcl.3
|- Z = ( GId ` G )
Assertion vczcl
|- ( W e. CVecOLD -> Z e. X )

Proof

Step Hyp Ref Expression
1 vczcl.1
 |-  G = ( 1st ` W )
2 vczcl.2
 |-  X = ran G
3 vczcl.3
 |-  Z = ( GId ` G )
4 1 vcgrp
 |-  ( W e. CVecOLD -> G e. GrpOp )
5 2 3 grpoidcl
 |-  ( G e. GrpOp -> Z e. X )
6 4 5 syl
 |-  ( W e. CVecOLD -> Z e. X )