Description: The zero vector is a vector. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vczcl.1 | |- G = ( 1st ` W ) |
|
vczcl.2 | |- X = ran G |
||
vczcl.3 | |- Z = ( GId ` G ) |
||
Assertion | vczcl | |- ( W e. CVecOLD -> Z e. X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vczcl.1 | |- G = ( 1st ` W ) |
|
2 | vczcl.2 | |- X = ran G |
|
3 | vczcl.3 | |- Z = ( GId ` G ) |
|
4 | 1 | vcgrp | |- ( W e. CVecOLD -> G e. GrpOp ) |
5 | 2 3 | grpoidcl | |- ( G e. GrpOp -> Z e. X ) |
6 | 4 5 | syl | |- ( W e. CVecOLD -> Z e. X ) |