| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdegp1ai.vg |
|- V = ( Vtx ` G ) |
| 2 |
|
vdegp1ai.u |
|- U e. V |
| 3 |
|
vdegp1ai.i |
|- I = ( iEdg ` G ) |
| 4 |
|
vdegp1ai.w |
|- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
| 5 |
|
vdegp1ai.d |
|- ( ( VtxDeg ` G ) ` U ) = P |
| 6 |
|
vdegp1ai.vf |
|- ( Vtx ` F ) = V |
| 7 |
|
vdegp1ai.x |
|- X e. V |
| 8 |
|
vdegp1ai.xu |
|- X =/= U |
| 9 |
|
vdegp1ai.y |
|- Y e. V |
| 10 |
|
vdegp1ai.yu |
|- Y =/= U |
| 11 |
|
vdegp1ai.f |
|- ( iEdg ` F ) = ( I ++ <" { X , Y } "> ) |
| 12 |
|
prex |
|- { X , Y } e. _V |
| 13 |
|
wrdf |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I : ( 0 ..^ ( # ` I ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 14 |
13
|
ffund |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> Fun I ) |
| 15 |
4 14
|
mp1i |
|- ( { X , Y } e. _V -> Fun I ) |
| 16 |
6
|
a1i |
|- ( { X , Y } e. _V -> ( Vtx ` F ) = V ) |
| 17 |
|
wrdv |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I e. Word _V ) |
| 18 |
4 17
|
ax-mp |
|- I e. Word _V |
| 19 |
|
cats1un |
|- ( ( I e. Word _V /\ { X , Y } e. _V ) -> ( I ++ <" { X , Y } "> ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
| 20 |
18 19
|
mpan |
|- ( { X , Y } e. _V -> ( I ++ <" { X , Y } "> ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
| 21 |
11 20
|
eqtrid |
|- ( { X , Y } e. _V -> ( iEdg ` F ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
| 22 |
|
fvexd |
|- ( { X , Y } e. _V -> ( # ` I ) e. _V ) |
| 23 |
|
wrdlndm |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` I ) e/ dom I ) |
| 24 |
4 23
|
mp1i |
|- ( { X , Y } e. _V -> ( # ` I ) e/ dom I ) |
| 25 |
2
|
a1i |
|- ( { X , Y } e. _V -> U e. V ) |
| 26 |
|
id |
|- ( { X , Y } e. _V -> { X , Y } e. _V ) |
| 27 |
8
|
necomi |
|- U =/= X |
| 28 |
10
|
necomi |
|- U =/= Y |
| 29 |
27 28
|
prneli |
|- U e/ { X , Y } |
| 30 |
29
|
a1i |
|- ( { X , Y } e. _V -> U e/ { X , Y } ) |
| 31 |
1 3 15 16 21 22 24 25 26 30
|
p1evtxdeq |
|- ( { X , Y } e. _V -> ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) ) |
| 32 |
12 31
|
ax-mp |
|- ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) |
| 33 |
32 5
|
eqtri |
|- ( ( VtxDeg ` F ) ` U ) = P |