Step |
Hyp |
Ref |
Expression |
1 |
|
vdegp1ai.vg |
|- V = ( Vtx ` G ) |
2 |
|
vdegp1ai.u |
|- U e. V |
3 |
|
vdegp1ai.i |
|- I = ( iEdg ` G ) |
4 |
|
vdegp1ai.w |
|- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
5 |
|
vdegp1ai.d |
|- ( ( VtxDeg ` G ) ` U ) = P |
6 |
|
vdegp1ai.vf |
|- ( Vtx ` F ) = V |
7 |
|
vdegp1ai.x |
|- X e. V |
8 |
|
vdegp1ai.xu |
|- X =/= U |
9 |
|
vdegp1ai.y |
|- Y e. V |
10 |
|
vdegp1ai.yu |
|- Y =/= U |
11 |
|
vdegp1ai.f |
|- ( iEdg ` F ) = ( I ++ <" { X , Y } "> ) |
12 |
|
prex |
|- { X , Y } e. _V |
13 |
|
wrdf |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I : ( 0 ..^ ( # ` I ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
14 |
13
|
ffund |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> Fun I ) |
15 |
4 14
|
mp1i |
|- ( { X , Y } e. _V -> Fun I ) |
16 |
6
|
a1i |
|- ( { X , Y } e. _V -> ( Vtx ` F ) = V ) |
17 |
|
wrdv |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I e. Word _V ) |
18 |
4 17
|
ax-mp |
|- I e. Word _V |
19 |
|
cats1un |
|- ( ( I e. Word _V /\ { X , Y } e. _V ) -> ( I ++ <" { X , Y } "> ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
20 |
18 19
|
mpan |
|- ( { X , Y } e. _V -> ( I ++ <" { X , Y } "> ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
21 |
11 20
|
eqtrid |
|- ( { X , Y } e. _V -> ( iEdg ` F ) = ( I u. { <. ( # ` I ) , { X , Y } >. } ) ) |
22 |
|
fvexd |
|- ( { X , Y } e. _V -> ( # ` I ) e. _V ) |
23 |
|
wrdlndm |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` I ) e/ dom I ) |
24 |
4 23
|
mp1i |
|- ( { X , Y } e. _V -> ( # ` I ) e/ dom I ) |
25 |
2
|
a1i |
|- ( { X , Y } e. _V -> U e. V ) |
26 |
|
id |
|- ( { X , Y } e. _V -> { X , Y } e. _V ) |
27 |
8
|
necomi |
|- U =/= X |
28 |
10
|
necomi |
|- U =/= Y |
29 |
27 28
|
prneli |
|- U e/ { X , Y } |
30 |
29
|
a1i |
|- ( { X , Y } e. _V -> U e/ { X , Y } ) |
31 |
1 3 15 16 21 22 24 25 26 30
|
p1evtxdeq |
|- ( { X , Y } e. _V -> ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) ) |
32 |
12 31
|
ax-mp |
|- ( ( VtxDeg ` F ) ` U ) = ( ( VtxDeg ` G ) ` U ) |
33 |
32 5
|
eqtri |
|- ( ( VtxDeg ` F ) ` U ) = P |