| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdegp1ai.vg |
|- V = ( Vtx ` G ) |
| 2 |
|
vdegp1ai.u |
|- U e. V |
| 3 |
|
vdegp1ai.i |
|- I = ( iEdg ` G ) |
| 4 |
|
vdegp1ai.w |
|- I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } |
| 5 |
|
vdegp1ai.d |
|- ( ( VtxDeg ` G ) ` U ) = P |
| 6 |
|
vdegp1ai.vf |
|- ( Vtx ` F ) = V |
| 7 |
|
vdegp1bi.x |
|- X e. V |
| 8 |
|
vdegp1bi.xu |
|- X =/= U |
| 9 |
|
vdegp1bi.f |
|- ( iEdg ` F ) = ( I ++ <" { U , X } "> ) |
| 10 |
|
prex |
|- { U , X } e. _V |
| 11 |
|
wrdf |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I : ( 0 ..^ ( # ` I ) ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 12 |
11
|
ffund |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> Fun I ) |
| 13 |
4 12
|
mp1i |
|- ( { U , X } e. _V -> Fun I ) |
| 14 |
6
|
a1i |
|- ( { U , X } e. _V -> ( Vtx ` F ) = V ) |
| 15 |
|
wrdv |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> I e. Word _V ) |
| 16 |
4 15
|
ax-mp |
|- I e. Word _V |
| 17 |
|
cats1un |
|- ( ( I e. Word _V /\ { U , X } e. _V ) -> ( I ++ <" { U , X } "> ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
| 18 |
16 17
|
mpan |
|- ( { U , X } e. _V -> ( I ++ <" { U , X } "> ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
| 19 |
9 18
|
eqtrid |
|- ( { U , X } e. _V -> ( iEdg ` F ) = ( I u. { <. ( # ` I ) , { U , X } >. } ) ) |
| 20 |
|
fvexd |
|- ( { U , X } e. _V -> ( # ` I ) e. _V ) |
| 21 |
|
wrdlndm |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` I ) e/ dom I ) |
| 22 |
4 21
|
mp1i |
|- ( { U , X } e. _V -> ( # ` I ) e/ dom I ) |
| 23 |
2
|
a1i |
|- ( { U , X } e. _V -> U e. V ) |
| 24 |
2 7
|
pm3.2i |
|- ( U e. V /\ X e. V ) |
| 25 |
|
prelpwi |
|- ( ( U e. V /\ X e. V ) -> { U , X } e. ~P V ) |
| 26 |
24 25
|
mp1i |
|- ( { U , X } e. _V -> { U , X } e. ~P V ) |
| 27 |
|
prid1g |
|- ( U e. V -> U e. { U , X } ) |
| 28 |
2 27
|
mp1i |
|- ( { U , X } e. _V -> U e. { U , X } ) |
| 29 |
8
|
necomi |
|- U =/= X |
| 30 |
|
hashprg |
|- ( ( U e. V /\ X e. V ) -> ( U =/= X <-> ( # ` { U , X } ) = 2 ) ) |
| 31 |
2 7 30
|
mp2an |
|- ( U =/= X <-> ( # ` { U , X } ) = 2 ) |
| 32 |
29 31
|
mpbi |
|- ( # ` { U , X } ) = 2 |
| 33 |
32
|
eqcomi |
|- 2 = ( # ` { U , X } ) |
| 34 |
|
2re |
|- 2 e. RR |
| 35 |
34
|
eqlei |
|- ( 2 = ( # ` { U , X } ) -> 2 <_ ( # ` { U , X } ) ) |
| 36 |
33 35
|
mp1i |
|- ( { U , X } e. _V -> 2 <_ ( # ` { U , X } ) ) |
| 37 |
1 3 13 14 19 20 22 23 26 28 36
|
p1evtxdp1 |
|- ( { U , X } e. _V -> ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e 1 ) ) |
| 38 |
10 37
|
ax-mp |
|- ( ( VtxDeg ` F ) ` U ) = ( ( ( VtxDeg ` G ) ` U ) +e 1 ) |
| 39 |
|
fzofi |
|- ( 0 ..^ ( # ` I ) ) e. Fin |
| 40 |
|
wrddm |
|- ( I e. Word { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> dom I = ( 0 ..^ ( # ` I ) ) ) |
| 41 |
4 40
|
ax-mp |
|- dom I = ( 0 ..^ ( # ` I ) ) |
| 42 |
41
|
eqcomi |
|- ( 0 ..^ ( # ` I ) ) = dom I |
| 43 |
1 3 42
|
vtxdgfisnn0 |
|- ( ( ( 0 ..^ ( # ` I ) ) e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) e. NN0 ) |
| 44 |
39 2 43
|
mp2an |
|- ( ( VtxDeg ` G ) ` U ) e. NN0 |
| 45 |
44
|
nn0rei |
|- ( ( VtxDeg ` G ) ` U ) e. RR |
| 46 |
|
1re |
|- 1 e. RR |
| 47 |
|
rexadd |
|- ( ( ( ( VtxDeg ` G ) ` U ) e. RR /\ 1 e. RR ) -> ( ( ( VtxDeg ` G ) ` U ) +e 1 ) = ( ( ( VtxDeg ` G ) ` U ) + 1 ) ) |
| 48 |
45 46 47
|
mp2an |
|- ( ( ( VtxDeg ` G ) ` U ) +e 1 ) = ( ( ( VtxDeg ` G ) ` U ) + 1 ) |
| 49 |
5
|
oveq1i |
|- ( ( ( VtxDeg ` G ) ` U ) + 1 ) = ( P + 1 ) |
| 50 |
38 48 49
|
3eqtri |
|- ( ( VtxDeg ` F ) ` U ) = ( P + 1 ) |