Step |
Hyp |
Ref |
Expression |
1 |
|
vdn1frgrv2.v |
|- V = ( Vtx ` G ) |
2 |
1
|
vdgn0frgrv2 |
|- ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) |
3 |
2
|
imp |
|- ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) |
4 |
1
|
vdgn1frgrv2 |
|- ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` N ) =/= 1 ) ) |
5 |
4
|
imp |
|- ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 1 ) |
6 |
1
|
vtxdgelxnn0 |
|- ( N e. V -> ( ( VtxDeg ` G ) ` N ) e. NN0* ) |
7 |
|
xnn0n0n1ge2b |
|- ( ( ( VtxDeg ` G ) ` N ) e. NN0* -> ( ( ( ( VtxDeg ` G ) ` N ) =/= 0 /\ ( ( VtxDeg ` G ) ` N ) =/= 1 ) <-> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) |
8 |
6 7
|
syl |
|- ( N e. V -> ( ( ( ( VtxDeg ` G ) ` N ) =/= 0 /\ ( ( VtxDeg ` G ) ` N ) =/= 1 ) <-> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> ( ( ( ( VtxDeg ` G ) ` N ) =/= 0 /\ ( ( VtxDeg ` G ) ` N ) =/= 1 ) <-> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) |
10 |
3 5 9
|
mpbi2and |
|- ( ( ( G e. FriendGraph /\ N e. V ) /\ 1 < ( # ` V ) ) -> 2 <_ ( ( VtxDeg ` G ) ` N ) ) |
11 |
10
|
ex |
|- ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> 2 <_ ( ( VtxDeg ` G ) ` N ) ) ) |