| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn1frgrv2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrconngr |  |-  ( G e. FriendGraph -> G e. ConnGraph ) | 
						
							| 3 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 4 |  | usgrumgr |  |-  ( G e. USGraph -> G e. UMGraph ) | 
						
							| 5 | 3 4 | syl |  |-  ( G e. FriendGraph -> G e. UMGraph ) | 
						
							| 6 | 1 | vdn0conngrumgrv2 |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) | 
						
							| 7 | 6 | ex |  |-  ( ( G e. ConnGraph /\ G e. UMGraph ) -> ( ( N e. V /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) | 
						
							| 8 | 2 5 7 | syl2anc |  |-  ( G e. FriendGraph -> ( ( N e. V /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) | 
						
							| 9 | 8 | expdimp |  |-  ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) |