Step |
Hyp |
Ref |
Expression |
1 |
|
vdn1frgrv2.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrconngr |
|- ( G e. FriendGraph -> G e. ConnGraph ) |
3 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
4 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
5 |
3 4
|
syl |
|- ( G e. FriendGraph -> G e. UMGraph ) |
6 |
1
|
vdn0conngrumgrv2 |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) |
7 |
6
|
ex |
|- ( ( G e. ConnGraph /\ G e. UMGraph ) -> ( ( N e. V /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) |
8 |
2 5 7
|
syl2anc |
|- ( G e. FriendGraph -> ( ( N e. V /\ 1 < ( # ` V ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) |
9 |
8
|
expdimp |
|- ( ( G e. FriendGraph /\ N e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) ) |