Metamath Proof Explorer


Theorem vdgn1frgrv3

Description: Any vertex in a friendship graph does not have degree 1, see remark 2 in MertziosUnger p. 153 (after Proposition 1): "... no node v of it [a friendship graph] may have deg(v) = 1.". (Contributed by Alexander van der Vekens, 4-Sep-2018) (Revised by AV, 4-Apr-2021)

Ref Expression
Hypothesis vdn1frgrv2.v
|- V = ( Vtx ` G )
Assertion vdgn1frgrv3
|- ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 )

Proof

Step Hyp Ref Expression
1 vdn1frgrv2.v
 |-  V = ( Vtx ` G )
2 1 vdgn1frgrv2
 |-  ( ( G e. FriendGraph /\ v e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` v ) =/= 1 ) )
3 2 impancom
 |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> ( v e. V -> ( ( VtxDeg ` G ) ` v ) =/= 1 ) )
4 3 ralrimiv
 |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 )