Step |
Hyp |
Ref |
Expression |
1 |
|
vdn0conngrv2.v |
|- V = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
4 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
5 |
1 2 3 4
|
vtxdumgrval |
|- ( ( G e. UMGraph /\ N e. V ) -> ( ( VtxDeg ` G ) ` N ) = ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) ) |
6 |
5
|
ad2ant2lr |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( VtxDeg ` G ) ` N ) = ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) ) |
7 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
8 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
9 |
|
funfn |
|- ( Fun ( iEdg ` G ) <-> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
10 |
9
|
biimpi |
|- ( Fun ( iEdg ` G ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
11 |
7 8 10
|
3syl |
|- ( G e. UMGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
12 |
11
|
adantl |
|- ( ( G e. ConnGraph /\ G e. UMGraph ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
13 |
12
|
adantr |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
14 |
|
simpl |
|- ( ( G e. ConnGraph /\ G e. UMGraph ) -> G e. ConnGraph ) |
15 |
14
|
adantr |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> G e. ConnGraph ) |
16 |
|
simpl |
|- ( ( N e. V /\ 1 < ( # ` V ) ) -> N e. V ) |
17 |
16
|
adantl |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> N e. V ) |
18 |
|
simprr |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> 1 < ( # ` V ) ) |
19 |
1 2
|
conngrv2edg |
|- ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> E. e e. ran ( iEdg ` G ) N e. e ) |
20 |
15 17 18 19
|
syl3anc |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> E. e e. ran ( iEdg ` G ) N e. e ) |
21 |
|
eleq2 |
|- ( e = ( ( iEdg ` G ) ` x ) -> ( N e. e <-> N e. ( ( iEdg ` G ) ` x ) ) ) |
22 |
21
|
rexrn |
|- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( E. e e. ran ( iEdg ` G ) N e. e <-> E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) ) ) |
23 |
22
|
biimpd |
|- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( E. e e. ran ( iEdg ` G ) N e. e -> E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) ) ) |
24 |
13 20 23
|
sylc |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) ) |
25 |
|
dfrex2 |
|- ( E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) <-> -. A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) |
26 |
24 25
|
sylib |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> -. A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) |
27 |
|
fvex |
|- ( iEdg ` G ) e. _V |
28 |
27
|
dmex |
|- dom ( iEdg ` G ) e. _V |
29 |
28
|
a1i |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> dom ( iEdg ` G ) e. _V ) |
30 |
|
rabexg |
|- ( dom ( iEdg ` G ) e. _V -> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } e. _V ) |
31 |
|
hasheq0 |
|- ( { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } e. _V -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = 0 <-> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = (/) ) ) |
32 |
29 30 31
|
3syl |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = 0 <-> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = (/) ) ) |
33 |
|
rabeq0 |
|- ( { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = (/) <-> A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) |
34 |
32 33
|
bitrdi |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = 0 <-> A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) ) |
35 |
34
|
necon3abid |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) =/= 0 <-> -. A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) ) |
36 |
26 35
|
mpbird |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) =/= 0 ) |
37 |
6 36
|
eqnetrd |
|- ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) |