| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vdn0conngrv2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 3 |  | eqid |  |-  dom ( iEdg ` G ) = dom ( iEdg ` G ) | 
						
							| 4 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 5 | 1 2 3 4 | vtxdumgrval |  |-  ( ( G e. UMGraph /\ N e. V ) -> ( ( VtxDeg ` G ) ` N ) = ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) ) | 
						
							| 6 | 5 | ad2ant2lr |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( VtxDeg ` G ) ` N ) = ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) ) | 
						
							| 7 |  | umgruhgr |  |-  ( G e. UMGraph -> G e. UHGraph ) | 
						
							| 8 | 2 | uhgrfun |  |-  ( G e. UHGraph -> Fun ( iEdg ` G ) ) | 
						
							| 9 |  | funfn |  |-  ( Fun ( iEdg ` G ) <-> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) | 
						
							| 10 | 9 | biimpi |  |-  ( Fun ( iEdg ` G ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) | 
						
							| 11 | 7 8 10 | 3syl |  |-  ( G e. UMGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( G e. ConnGraph /\ G e. UMGraph ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) | 
						
							| 14 |  | simpl |  |-  ( ( G e. ConnGraph /\ G e. UMGraph ) -> G e. ConnGraph ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> G e. ConnGraph ) | 
						
							| 16 |  | simpl |  |-  ( ( N e. V /\ 1 < ( # ` V ) ) -> N e. V ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> N e. V ) | 
						
							| 18 |  | simprr |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> 1 < ( # ` V ) ) | 
						
							| 19 | 1 2 | conngrv2edg |  |-  ( ( G e. ConnGraph /\ N e. V /\ 1 < ( # ` V ) ) -> E. e e. ran ( iEdg ` G ) N e. e ) | 
						
							| 20 | 15 17 18 19 | syl3anc |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> E. e e. ran ( iEdg ` G ) N e. e ) | 
						
							| 21 |  | eleq2 |  |-  ( e = ( ( iEdg ` G ) ` x ) -> ( N e. e <-> N e. ( ( iEdg ` G ) ` x ) ) ) | 
						
							| 22 | 21 | rexrn |  |-  ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( E. e e. ran ( iEdg ` G ) N e. e <-> E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) ) ) | 
						
							| 23 | 22 | biimpd |  |-  ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( E. e e. ran ( iEdg ` G ) N e. e -> E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) ) ) | 
						
							| 24 | 13 20 23 | sylc |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) ) | 
						
							| 25 |  | dfrex2 |  |-  ( E. x e. dom ( iEdg ` G ) N e. ( ( iEdg ` G ) ` x ) <-> -. A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) | 
						
							| 26 | 24 25 | sylib |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> -. A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) | 
						
							| 27 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 28 | 27 | dmex |  |-  dom ( iEdg ` G ) e. _V | 
						
							| 29 | 28 | a1i |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> dom ( iEdg ` G ) e. _V ) | 
						
							| 30 |  | rabexg |  |-  ( dom ( iEdg ` G ) e. _V -> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } e. _V ) | 
						
							| 31 |  | hasheq0 |  |-  ( { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } e. _V -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = 0 <-> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = (/) ) ) | 
						
							| 32 | 29 30 31 | 3syl |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = 0 <-> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = (/) ) ) | 
						
							| 33 |  | rabeq0 |  |-  ( { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = (/) <-> A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) | 
						
							| 34 | 32 33 | bitrdi |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = 0 <-> A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) ) | 
						
							| 35 | 34 | necon3abid |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) =/= 0 <-> -. A. x e. dom ( iEdg ` G ) -. N e. ( ( iEdg ` G ) ` x ) ) ) | 
						
							| 36 | 26 35 | mpbird |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) =/= 0 ) | 
						
							| 37 | 6 36 | eqnetrd |  |-  ( ( ( G e. ConnGraph /\ G e. UMGraph ) /\ ( N e. V /\ 1 < ( # ` V ) ) ) -> ( ( VtxDeg ` G ) ` N ) =/= 0 ) |