| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vdumgr0.v |
|- V = ( Vtx ` G ) |
| 2 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> G e. UHGraph ) |
| 4 |
|
simp3 |
|- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( # ` V ) = 1 ) |
| 5 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 6 |
1 5
|
umgrislfupgr |
|- ( G e. UMGraph <-> ( G e. UPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 7 |
6
|
simprbi |
|- ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
| 9 |
3 4 8
|
3jca |
|- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( G e. UHGraph /\ ( # ` V ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
| 10 |
|
simp2 |
|- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> N e. V ) |
| 11 |
|
eqid |
|- { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ~P V | 2 <_ ( # ` x ) } |
| 12 |
1 5 11
|
vtxdlfuhgr1v |
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( N e. V -> ( ( VtxDeg ` G ) ` N ) = 0 ) ) |
| 13 |
9 10 12
|
sylc |
|- ( ( G e. UMGraph /\ N e. V /\ ( # ` V ) = 1 ) -> ( ( VtxDeg ` G ) ` N ) = 0 ) |