Metamath Proof Explorer


Theorem vexwt

Description: A standard theorem of predicate calculus ( stdpc4 ) expressed using class abstractions. Closed form of vexw . (Contributed by BJ, 14-Jun-2019)

Ref Expression
Assertion vexwt
|- ( A. x ph -> y e. { x | ph } )

Proof

Step Hyp Ref Expression
1 stdpc4
 |-  ( A. x ph -> [ y / x ] ph )
2 df-clab
 |-  ( y e. { x | ph } <-> [ y / x ] ph )
3 1 2 sylibr
 |-  ( A. x ph -> y e. { x | ph } )