| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							phiprm | 
							 |-  ( P e. Prime -> ( phi ` P ) = ( P - 1 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eqcomd | 
							 |-  ( P e. Prime -> ( P - 1 ) = ( phi ` P ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant1 | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) = ( phi ` P ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							oveq2d | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 1 ) ) = ( A ^ ( phi ` P ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1d | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = ( ( A ^ ( phi ` P ) ) mod P ) )  | 
						
						
							| 6 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. NN )  | 
						
						
							| 8 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ )  | 
						
						
							| 9 | 
							
								
							 | 
							prmz | 
							 |-  ( P e. Prime -> P e. ZZ )  | 
						
						
							| 10 | 
							
								9
							 | 
							anim1ci | 
							 |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A e. ZZ /\ P e. ZZ ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							3adant3 | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A e. ZZ /\ P e. ZZ ) )  | 
						
						
							| 12 | 
							
								
							 | 
							gcdcom | 
							 |-  ( ( A e. ZZ /\ P e. ZZ ) -> ( A gcd P ) = ( P gcd A ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) )  | 
						
						
							| 14 | 
							
								
							 | 
							coprm | 
							 |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							biimp3a | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P gcd A ) = 1 )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eqtrd | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = 1 )  | 
						
						
							| 17 | 
							
								
							 | 
							eulerth | 
							 |-  ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) )  | 
						
						
							| 18 | 
							
								7 8 16 17
							 | 
							syl3anc | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) )  | 
						
						
							| 19 | 
							
								6
							 | 
							nnred | 
							 |-  ( P e. Prime -> P e. RR )  | 
						
						
							| 20 | 
							
								
							 | 
							prmgt1 | 
							 |-  ( P e. Prime -> 1 < P )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							jca | 
							 |-  ( P e. Prime -> ( P e. RR /\ 1 < P ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3ad2ant1 | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P e. RR /\ 1 < P ) )  | 
						
						
							| 23 | 
							
								
							 | 
							1mod | 
							 |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( 1 mod P ) = 1 )  | 
						
						
							| 25 | 
							
								5 18 24
							 | 
							3eqtrd | 
							 |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = 1 )  |