| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phiprm |
|- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
| 2 |
1
|
eqcomd |
|- ( P e. Prime -> ( P - 1 ) = ( phi ` P ) ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) = ( phi ` P ) ) |
| 4 |
3
|
oveq2d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 1 ) ) = ( A ^ ( phi ` P ) ) ) |
| 5 |
4
|
oveq1d |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = ( ( A ^ ( phi ` P ) ) mod P ) ) |
| 6 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. NN ) |
| 8 |
|
simp2 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ ) |
| 9 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 10 |
9
|
anim1ci |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( A e. ZZ /\ P e. ZZ ) ) |
| 11 |
10
|
3adant3 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A e. ZZ /\ P e. ZZ ) ) |
| 12 |
|
gcdcom |
|- ( ( A e. ZZ /\ P e. ZZ ) -> ( A gcd P ) = ( P gcd A ) ) |
| 13 |
11 12
|
syl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) ) |
| 14 |
|
coprm |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
| 15 |
14
|
biimp3a |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P gcd A ) = 1 ) |
| 16 |
13 15
|
eqtrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = 1 ) |
| 17 |
|
eulerth |
|- ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 18 |
7 8 16 17
|
syl3anc |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
| 19 |
6
|
nnred |
|- ( P e. Prime -> P e. RR ) |
| 20 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 21 |
19 20
|
jca |
|- ( P e. Prime -> ( P e. RR /\ 1 < P ) ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P e. RR /\ 1 < P ) ) |
| 23 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
| 24 |
22 23
|
syl |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( 1 mod P ) = 1 ) |
| 25 |
5 18 24
|
3eqtrd |
|- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = 1 ) |