| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta1.1 |
|- A = ( coeff ` F ) |
| 2 |
|
vieta1.2 |
|- N = ( deg ` F ) |
| 3 |
|
vieta1.3 |
|- R = ( `' F " { 0 } ) |
| 4 |
|
vieta1.4 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 5 |
|
vieta1.5 |
|- ( ph -> ( # ` R ) = N ) |
| 6 |
|
vieta1lem.6 |
|- ( ph -> D e. NN ) |
| 7 |
|
vieta1lem.7 |
|- ( ph -> ( D + 1 ) = N ) |
| 8 |
|
vieta1lem.8 |
|- ( ph -> A. f e. ( Poly ` CC ) ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 9 |
|
vieta1lem.9 |
|- Q = ( F quot ( Xp oF - ( CC X. { z } ) ) ) |
| 10 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 11 |
4
|
adantr |
|- ( ( ph /\ z e. R ) -> F e. ( Poly ` S ) ) |
| 12 |
10 11
|
sselid |
|- ( ( ph /\ z e. R ) -> F e. ( Poly ` CC ) ) |
| 13 |
|
cnvimass |
|- ( `' F " { 0 } ) C_ dom F |
| 14 |
3 13
|
eqsstri |
|- R C_ dom F |
| 15 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 16 |
4 15
|
syl |
|- ( ph -> F : CC --> CC ) |
| 17 |
14 16
|
fssdm |
|- ( ph -> R C_ CC ) |
| 18 |
17
|
sselda |
|- ( ( ph /\ z e. R ) -> z e. CC ) |
| 19 |
|
eqid |
|- ( Xp oF - ( CC X. { z } ) ) = ( Xp oF - ( CC X. { z } ) ) |
| 20 |
19
|
plyremlem |
|- ( z e. CC -> ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) ) |
| 21 |
18 20
|
syl |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) ) |
| 22 |
21
|
simp1d |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) ) |
| 23 |
21
|
simp2d |
|- ( ( ph /\ z e. R ) -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 ) |
| 24 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 25 |
24
|
a1i |
|- ( ( ph /\ z e. R ) -> 1 =/= 0 ) |
| 26 |
23 25
|
eqnetrd |
|- ( ( ph /\ z e. R ) -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) =/= 0 ) |
| 27 |
|
fveq2 |
|- ( ( Xp oF - ( CC X. { z } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = ( deg ` 0p ) ) |
| 28 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 29 |
27 28
|
eqtrdi |
|- ( ( Xp oF - ( CC X. { z } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 0 ) |
| 30 |
29
|
necon3i |
|- ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) =/= 0 -> ( Xp oF - ( CC X. { z } ) ) =/= 0p ) |
| 31 |
26 30
|
syl |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) =/= 0p ) |
| 32 |
|
quotcl2 |
|- ( ( F e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { z } ) ) =/= 0p ) -> ( F quot ( Xp oF - ( CC X. { z } ) ) ) e. ( Poly ` CC ) ) |
| 33 |
12 22 31 32
|
syl3anc |
|- ( ( ph /\ z e. R ) -> ( F quot ( Xp oF - ( CC X. { z } ) ) ) e. ( Poly ` CC ) ) |
| 34 |
9 33
|
eqeltrid |
|- ( ( ph /\ z e. R ) -> Q e. ( Poly ` CC ) ) |
| 35 |
|
1cnd |
|- ( ( ph /\ z e. R ) -> 1 e. CC ) |
| 36 |
6
|
nncnd |
|- ( ph -> D e. CC ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ z e. R ) -> D e. CC ) |
| 38 |
|
dgrcl |
|- ( Q e. ( Poly ` CC ) -> ( deg ` Q ) e. NN0 ) |
| 39 |
34 38
|
syl |
|- ( ( ph /\ z e. R ) -> ( deg ` Q ) e. NN0 ) |
| 40 |
39
|
nn0cnd |
|- ( ( ph /\ z e. R ) -> ( deg ` Q ) e. CC ) |
| 41 |
|
ax-1cn |
|- 1 e. CC |
| 42 |
|
addcom |
|- ( ( 1 e. CC /\ D e. CC ) -> ( 1 + D ) = ( D + 1 ) ) |
| 43 |
41 37 42
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( 1 + D ) = ( D + 1 ) ) |
| 44 |
7 2
|
eqtrdi |
|- ( ph -> ( D + 1 ) = ( deg ` F ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ z e. R ) -> ( D + 1 ) = ( deg ` F ) ) |
| 46 |
3
|
eleq2i |
|- ( z e. R <-> z e. ( `' F " { 0 } ) ) |
| 47 |
16
|
ffnd |
|- ( ph -> F Fn CC ) |
| 48 |
|
fniniseg |
|- ( F Fn CC -> ( z e. ( `' F " { 0 } ) <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
| 49 |
47 48
|
syl |
|- ( ph -> ( z e. ( `' F " { 0 } ) <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
| 50 |
46 49
|
bitrid |
|- ( ph -> ( z e. R <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
| 51 |
50
|
simplbda |
|- ( ( ph /\ z e. R ) -> ( F ` z ) = 0 ) |
| 52 |
19
|
facth |
|- ( ( F e. ( Poly ` S ) /\ z e. CC /\ ( F ` z ) = 0 ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 53 |
11 18 51 52
|
syl3anc |
|- ( ( ph /\ z e. R ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 54 |
9
|
oveq2i |
|- ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) |
| 55 |
53 54
|
eqtr4di |
|- ( ( ph /\ z e. R ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) |
| 56 |
55
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( deg ` F ) = ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
| 57 |
6
|
peano2nnd |
|- ( ph -> ( D + 1 ) e. NN ) |
| 58 |
7 57
|
eqeltrrd |
|- ( ph -> N e. NN ) |
| 59 |
58
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 60 |
2 59
|
eqnetrrid |
|- ( ph -> ( deg ` F ) =/= 0 ) |
| 61 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
| 62 |
61 28
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
| 63 |
62
|
necon3i |
|- ( ( deg ` F ) =/= 0 -> F =/= 0p ) |
| 64 |
60 63
|
syl |
|- ( ph -> F =/= 0p ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ z e. R ) -> F =/= 0p ) |
| 66 |
55 65
|
eqnetrrd |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) =/= 0p ) |
| 67 |
|
plymul0or |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = 0p <-> ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
| 68 |
22 34 67
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = 0p <-> ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
| 69 |
68
|
necon3abid |
|- ( ( ph /\ z e. R ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) =/= 0p <-> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
| 70 |
66 69
|
mpbid |
|- ( ( ph /\ z e. R ) -> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) |
| 71 |
|
neanior |
|- ( ( ( Xp oF - ( CC X. { z } ) ) =/= 0p /\ Q =/= 0p ) <-> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) |
| 72 |
70 71
|
sylibr |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) =/= 0p /\ Q =/= 0p ) ) |
| 73 |
72
|
simprd |
|- ( ( ph /\ z e. R ) -> Q =/= 0p ) |
| 74 |
|
eqid |
|- ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = ( deg ` ( Xp oF - ( CC X. { z } ) ) ) |
| 75 |
|
eqid |
|- ( deg ` Q ) = ( deg ` Q ) |
| 76 |
74 75
|
dgrmul |
|- ( ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { z } ) ) =/= 0p ) /\ ( Q e. ( Poly ` CC ) /\ Q =/= 0p ) ) -> ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 77 |
22 31 34 73 76
|
syl22anc |
|- ( ( ph /\ z e. R ) -> ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 78 |
45 56 77
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> ( D + 1 ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 79 |
23
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) = ( 1 + ( deg ` Q ) ) ) |
| 80 |
43 78 79
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> ( 1 + D ) = ( 1 + ( deg ` Q ) ) ) |
| 81 |
35 37 40 80
|
addcanad |
|- ( ( ph /\ z e. R ) -> D = ( deg ` Q ) ) |
| 82 |
34 81
|
jca |
|- ( ( ph /\ z e. R ) -> ( Q e. ( Poly ` CC ) /\ D = ( deg ` Q ) ) ) |