Step |
Hyp |
Ref |
Expression |
1 |
|
vieta1.1 |
|- A = ( coeff ` F ) |
2 |
|
vieta1.2 |
|- N = ( deg ` F ) |
3 |
|
vieta1.3 |
|- R = ( `' F " { 0 } ) |
4 |
|
vieta1.4 |
|- ( ph -> F e. ( Poly ` S ) ) |
5 |
|
vieta1.5 |
|- ( ph -> ( # ` R ) = N ) |
6 |
|
vieta1lem.6 |
|- ( ph -> D e. NN ) |
7 |
|
vieta1lem.7 |
|- ( ph -> ( D + 1 ) = N ) |
8 |
|
vieta1lem.8 |
|- ( ph -> A. f e. ( Poly ` CC ) ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
9 |
|
vieta1lem.9 |
|- Q = ( F quot ( Xp oF - ( CC X. { z } ) ) ) |
10 |
6
|
peano2nnd |
|- ( ph -> ( D + 1 ) e. NN ) |
11 |
7 10
|
eqeltrrd |
|- ( ph -> N e. NN ) |
12 |
11
|
nnne0d |
|- ( ph -> N =/= 0 ) |
13 |
5 12
|
eqnetrd |
|- ( ph -> ( # ` R ) =/= 0 ) |
14 |
2 12
|
eqnetrrid |
|- ( ph -> ( deg ` F ) =/= 0 ) |
15 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
16 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
17 |
15 16
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
18 |
17
|
necon3i |
|- ( ( deg ` F ) =/= 0 -> F =/= 0p ) |
19 |
14 18
|
syl |
|- ( ph -> F =/= 0p ) |
20 |
3
|
fta1 |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |
21 |
4 19 20
|
syl2anc |
|- ( ph -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |
22 |
21
|
simpld |
|- ( ph -> R e. Fin ) |
23 |
|
hasheq0 |
|- ( R e. Fin -> ( ( # ` R ) = 0 <-> R = (/) ) ) |
24 |
22 23
|
syl |
|- ( ph -> ( ( # ` R ) = 0 <-> R = (/) ) ) |
25 |
24
|
necon3bid |
|- ( ph -> ( ( # ` R ) =/= 0 <-> R =/= (/) ) ) |
26 |
13 25
|
mpbid |
|- ( ph -> R =/= (/) ) |
27 |
|
n0 |
|- ( R =/= (/) <-> E. z z e. R ) |
28 |
26 27
|
sylib |
|- ( ph -> E. z z e. R ) |
29 |
|
incom |
|- ( { z } i^i ( `' Q " { 0 } ) ) = ( ( `' Q " { 0 } ) i^i { z } ) |
30 |
1 2 3 4 5 6 7 8 9
|
vieta1lem1 |
|- ( ( ph /\ z e. R ) -> ( Q e. ( Poly ` CC ) /\ D = ( deg ` Q ) ) ) |
31 |
30
|
simprd |
|- ( ( ph /\ z e. R ) -> D = ( deg ` Q ) ) |
32 |
30
|
simpld |
|- ( ( ph /\ z e. R ) -> Q e. ( Poly ` CC ) ) |
33 |
|
dgrcl |
|- ( Q e. ( Poly ` CC ) -> ( deg ` Q ) e. NN0 ) |
34 |
32 33
|
syl |
|- ( ( ph /\ z e. R ) -> ( deg ` Q ) e. NN0 ) |
35 |
34
|
nn0red |
|- ( ( ph /\ z e. R ) -> ( deg ` Q ) e. RR ) |
36 |
31 35
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> D e. RR ) |
37 |
36
|
ltp1d |
|- ( ( ph /\ z e. R ) -> D < ( D + 1 ) ) |
38 |
36 37
|
gtned |
|- ( ( ph /\ z e. R ) -> ( D + 1 ) =/= D ) |
39 |
|
snssi |
|- ( z e. ( `' Q " { 0 } ) -> { z } C_ ( `' Q " { 0 } ) ) |
40 |
|
ssequn1 |
|- ( { z } C_ ( `' Q " { 0 } ) <-> ( { z } u. ( `' Q " { 0 } ) ) = ( `' Q " { 0 } ) ) |
41 |
39 40
|
sylib |
|- ( z e. ( `' Q " { 0 } ) -> ( { z } u. ( `' Q " { 0 } ) ) = ( `' Q " { 0 } ) ) |
42 |
41
|
fveq2d |
|- ( z e. ( `' Q " { 0 } ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( # ` ( `' Q " { 0 } ) ) ) |
43 |
4
|
adantr |
|- ( ( ph /\ z e. R ) -> F e. ( Poly ` S ) ) |
44 |
|
cnvimass |
|- ( `' F " { 0 } ) C_ dom F |
45 |
3 44
|
eqsstri |
|- R C_ dom F |
46 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
47 |
|
fdm |
|- ( F : CC --> CC -> dom F = CC ) |
48 |
4 46 47
|
3syl |
|- ( ph -> dom F = CC ) |
49 |
45 48
|
sseqtrid |
|- ( ph -> R C_ CC ) |
50 |
49
|
sselda |
|- ( ( ph /\ z e. R ) -> z e. CC ) |
51 |
3
|
eleq2i |
|- ( z e. R <-> z e. ( `' F " { 0 } ) ) |
52 |
|
ffn |
|- ( F : CC --> CC -> F Fn CC ) |
53 |
|
fniniseg |
|- ( F Fn CC -> ( z e. ( `' F " { 0 } ) <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
54 |
4 46 52 53
|
4syl |
|- ( ph -> ( z e. ( `' F " { 0 } ) <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
55 |
51 54
|
syl5bb |
|- ( ph -> ( z e. R <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
56 |
55
|
simplbda |
|- ( ( ph /\ z e. R ) -> ( F ` z ) = 0 ) |
57 |
|
eqid |
|- ( Xp oF - ( CC X. { z } ) ) = ( Xp oF - ( CC X. { z } ) ) |
58 |
57
|
facth |
|- ( ( F e. ( Poly ` S ) /\ z e. CC /\ ( F ` z ) = 0 ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) ) |
59 |
43 50 56 58
|
syl3anc |
|- ( ( ph /\ z e. R ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) ) |
60 |
9
|
oveq2i |
|- ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) |
61 |
59 60
|
eqtr4di |
|- ( ( ph /\ z e. R ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) |
62 |
61
|
cnveqd |
|- ( ( ph /\ z e. R ) -> `' F = `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) |
63 |
62
|
imaeq1d |
|- ( ( ph /\ z e. R ) -> ( `' F " { 0 } ) = ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) ) |
64 |
3 63
|
eqtrid |
|- ( ( ph /\ z e. R ) -> R = ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) ) |
65 |
|
cnex |
|- CC e. _V |
66 |
57
|
plyremlem |
|- ( z e. CC -> ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) ) |
67 |
50 66
|
syl |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) ) |
68 |
67
|
simp1d |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) ) |
69 |
|
plyf |
|- ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) -> ( Xp oF - ( CC X. { z } ) ) : CC --> CC ) |
70 |
68 69
|
syl |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) : CC --> CC ) |
71 |
|
plyf |
|- ( Q e. ( Poly ` CC ) -> Q : CC --> CC ) |
72 |
32 71
|
syl |
|- ( ( ph /\ z e. R ) -> Q : CC --> CC ) |
73 |
|
ofmulrt |
|- ( ( CC e. _V /\ ( Xp oF - ( CC X. { z } ) ) : CC --> CC /\ Q : CC --> CC ) -> ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) u. ( `' Q " { 0 } ) ) ) |
74 |
65 70 72 73
|
mp3an2i |
|- ( ( ph /\ z e. R ) -> ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) u. ( `' Q " { 0 } ) ) ) |
75 |
67
|
simp3d |
|- ( ( ph /\ z e. R ) -> ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) |
76 |
75
|
uneq1d |
|- ( ( ph /\ z e. R ) -> ( ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) u. ( `' Q " { 0 } ) ) = ( { z } u. ( `' Q " { 0 } ) ) ) |
77 |
64 74 76
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> R = ( { z } u. ( `' Q " { 0 } ) ) ) |
78 |
77
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( # ` R ) = ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) ) |
79 |
5 7
|
eqtr4d |
|- ( ph -> ( # ` R ) = ( D + 1 ) ) |
80 |
79
|
adantr |
|- ( ( ph /\ z e. R ) -> ( # ` R ) = ( D + 1 ) ) |
81 |
78 80
|
eqtr3d |
|- ( ( ph /\ z e. R ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( D + 1 ) ) |
82 |
19
|
adantr |
|- ( ( ph /\ z e. R ) -> F =/= 0p ) |
83 |
61 82
|
eqnetrrd |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) =/= 0p ) |
84 |
|
plymul0or |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = 0p <-> ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
85 |
68 32 84
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = 0p <-> ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
86 |
85
|
necon3abid |
|- ( ( ph /\ z e. R ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) =/= 0p <-> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
87 |
83 86
|
mpbid |
|- ( ( ph /\ z e. R ) -> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) |
88 |
|
neanior |
|- ( ( ( Xp oF - ( CC X. { z } ) ) =/= 0p /\ Q =/= 0p ) <-> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) |
89 |
87 88
|
sylibr |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) =/= 0p /\ Q =/= 0p ) ) |
90 |
89
|
simprd |
|- ( ( ph /\ z e. R ) -> Q =/= 0p ) |
91 |
|
eqid |
|- ( `' Q " { 0 } ) = ( `' Q " { 0 } ) |
92 |
91
|
fta1 |
|- ( ( Q e. ( Poly ` CC ) /\ Q =/= 0p ) -> ( ( `' Q " { 0 } ) e. Fin /\ ( # ` ( `' Q " { 0 } ) ) <_ ( deg ` Q ) ) ) |
93 |
32 90 92
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( `' Q " { 0 } ) e. Fin /\ ( # ` ( `' Q " { 0 } ) ) <_ ( deg ` Q ) ) ) |
94 |
93
|
simprd |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) <_ ( deg ` Q ) ) |
95 |
94 31
|
breqtrrd |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) <_ D ) |
96 |
|
snfi |
|- { z } e. Fin |
97 |
93
|
simpld |
|- ( ( ph /\ z e. R ) -> ( `' Q " { 0 } ) e. Fin ) |
98 |
|
hashun2 |
|- ( ( { z } e. Fin /\ ( `' Q " { 0 } ) e. Fin ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) <_ ( ( # ` { z } ) + ( # ` ( `' Q " { 0 } ) ) ) ) |
99 |
96 97 98
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) <_ ( ( # ` { z } ) + ( # ` ( `' Q " { 0 } ) ) ) ) |
100 |
|
ax-1cn |
|- 1 e. CC |
101 |
6
|
nncnd |
|- ( ph -> D e. CC ) |
102 |
101
|
adantr |
|- ( ( ph /\ z e. R ) -> D e. CC ) |
103 |
|
addcom |
|- ( ( 1 e. CC /\ D e. CC ) -> ( 1 + D ) = ( D + 1 ) ) |
104 |
100 102 103
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( 1 + D ) = ( D + 1 ) ) |
105 |
81 104
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( 1 + D ) ) |
106 |
|
hashsng |
|- ( z e. R -> ( # ` { z } ) = 1 ) |
107 |
106
|
adantl |
|- ( ( ph /\ z e. R ) -> ( # ` { z } ) = 1 ) |
108 |
107
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( # ` { z } ) + ( # ` ( `' Q " { 0 } ) ) ) = ( 1 + ( # ` ( `' Q " { 0 } ) ) ) ) |
109 |
99 105 108
|
3brtr3d |
|- ( ( ph /\ z e. R ) -> ( 1 + D ) <_ ( 1 + ( # ` ( `' Q " { 0 } ) ) ) ) |
110 |
|
hashcl |
|- ( ( `' Q " { 0 } ) e. Fin -> ( # ` ( `' Q " { 0 } ) ) e. NN0 ) |
111 |
97 110
|
syl |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) e. NN0 ) |
112 |
111
|
nn0red |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) e. RR ) |
113 |
|
1red |
|- ( ( ph /\ z e. R ) -> 1 e. RR ) |
114 |
36 112 113
|
leadd2d |
|- ( ( ph /\ z e. R ) -> ( D <_ ( # ` ( `' Q " { 0 } ) ) <-> ( 1 + D ) <_ ( 1 + ( # ` ( `' Q " { 0 } ) ) ) ) ) |
115 |
109 114
|
mpbird |
|- ( ( ph /\ z e. R ) -> D <_ ( # ` ( `' Q " { 0 } ) ) ) |
116 |
112 36
|
letri3d |
|- ( ( ph /\ z e. R ) -> ( ( # ` ( `' Q " { 0 } ) ) = D <-> ( ( # ` ( `' Q " { 0 } ) ) <_ D /\ D <_ ( # ` ( `' Q " { 0 } ) ) ) ) ) |
117 |
95 115 116
|
mpbir2and |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) = D ) |
118 |
81 117
|
eqeq12d |
|- ( ( ph /\ z e. R ) -> ( ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( # ` ( `' Q " { 0 } ) ) <-> ( D + 1 ) = D ) ) |
119 |
42 118
|
syl5ib |
|- ( ( ph /\ z e. R ) -> ( z e. ( `' Q " { 0 } ) -> ( D + 1 ) = D ) ) |
120 |
119
|
necon3ad |
|- ( ( ph /\ z e. R ) -> ( ( D + 1 ) =/= D -> -. z e. ( `' Q " { 0 } ) ) ) |
121 |
38 120
|
mpd |
|- ( ( ph /\ z e. R ) -> -. z e. ( `' Q " { 0 } ) ) |
122 |
|
disjsn |
|- ( ( ( `' Q " { 0 } ) i^i { z } ) = (/) <-> -. z e. ( `' Q " { 0 } ) ) |
123 |
121 122
|
sylibr |
|- ( ( ph /\ z e. R ) -> ( ( `' Q " { 0 } ) i^i { z } ) = (/) ) |
124 |
29 123
|
eqtrid |
|- ( ( ph /\ z e. R ) -> ( { z } i^i ( `' Q " { 0 } ) ) = (/) ) |
125 |
22
|
adantr |
|- ( ( ph /\ z e. R ) -> R e. Fin ) |
126 |
49
|
adantr |
|- ( ( ph /\ z e. R ) -> R C_ CC ) |
127 |
126
|
sselda |
|- ( ( ( ph /\ z e. R ) /\ x e. R ) -> x e. CC ) |
128 |
124 77 125 127
|
fsumsplit |
|- ( ( ph /\ z e. R ) -> sum_ x e. R x = ( sum_ x e. { z } x + sum_ x e. ( `' Q " { 0 } ) x ) ) |
129 |
|
id |
|- ( x = z -> x = z ) |
130 |
129
|
sumsn |
|- ( ( z e. CC /\ z e. CC ) -> sum_ x e. { z } x = z ) |
131 |
50 50 130
|
syl2anc |
|- ( ( ph /\ z e. R ) -> sum_ x e. { z } x = z ) |
132 |
50
|
negnegd |
|- ( ( ph /\ z e. R ) -> -u -u z = z ) |
133 |
131 132
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> sum_ x e. { z } x = -u -u z ) |
134 |
117 31
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) |
135 |
|
fveq2 |
|- ( f = Q -> ( deg ` f ) = ( deg ` Q ) ) |
136 |
135
|
eqeq2d |
|- ( f = Q -> ( D = ( deg ` f ) <-> D = ( deg ` Q ) ) ) |
137 |
|
cnveq |
|- ( f = Q -> `' f = `' Q ) |
138 |
137
|
imaeq1d |
|- ( f = Q -> ( `' f " { 0 } ) = ( `' Q " { 0 } ) ) |
139 |
138
|
fveq2d |
|- ( f = Q -> ( # ` ( `' f " { 0 } ) ) = ( # ` ( `' Q " { 0 } ) ) ) |
140 |
139 135
|
eqeq12d |
|- ( f = Q -> ( ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) <-> ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) ) |
141 |
136 140
|
anbi12d |
|- ( f = Q -> ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( D = ( deg ` Q ) /\ ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) ) ) |
142 |
138
|
sumeq1d |
|- ( f = Q -> sum_ x e. ( `' f " { 0 } ) x = sum_ x e. ( `' Q " { 0 } ) x ) |
143 |
|
fveq2 |
|- ( f = Q -> ( coeff ` f ) = ( coeff ` Q ) ) |
144 |
135
|
oveq1d |
|- ( f = Q -> ( ( deg ` f ) - 1 ) = ( ( deg ` Q ) - 1 ) ) |
145 |
143 144
|
fveq12d |
|- ( f = Q -> ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) = ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) ) |
146 |
143 135
|
fveq12d |
|- ( f = Q -> ( ( coeff ` f ) ` ( deg ` f ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
147 |
145 146
|
oveq12d |
|- ( f = Q -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) = ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
148 |
147
|
negeqd |
|- ( f = Q -> -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
149 |
142 148
|
eqeq12d |
|- ( f = Q -> ( sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) <-> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) ) |
150 |
141 149
|
imbi12d |
|- ( f = Q -> ( ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( D = ( deg ` Q ) /\ ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) ) ) |
151 |
8
|
adantr |
|- ( ( ph /\ z e. R ) -> A. f e. ( Poly ` CC ) ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
152 |
150 151 32
|
rspcdva |
|- ( ( ph /\ z e. R ) -> ( ( D = ( deg ` Q ) /\ ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) ) |
153 |
31 134 152
|
mp2and |
|- ( ( ph /\ z e. R ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
154 |
31
|
fvoveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( D - 1 ) ) = ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) ) |
155 |
61
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( coeff ` F ) = ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
156 |
1 155
|
eqtrid |
|- ( ( ph /\ z e. R ) -> A = ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
157 |
61
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( deg ` F ) = ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
158 |
67
|
simp2d |
|- ( ( ph /\ z e. R ) -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 ) |
159 |
|
ax-1ne0 |
|- 1 =/= 0 |
160 |
159
|
a1i |
|- ( ( ph /\ z e. R ) -> 1 =/= 0 ) |
161 |
158 160
|
eqnetrd |
|- ( ( ph /\ z e. R ) -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) =/= 0 ) |
162 |
|
fveq2 |
|- ( ( Xp oF - ( CC X. { z } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = ( deg ` 0p ) ) |
163 |
162 16
|
eqtrdi |
|- ( ( Xp oF - ( CC X. { z } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 0 ) |
164 |
163
|
necon3i |
|- ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) =/= 0 -> ( Xp oF - ( CC X. { z } ) ) =/= 0p ) |
165 |
161 164
|
syl |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) =/= 0p ) |
166 |
|
eqid |
|- ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = ( deg ` ( Xp oF - ( CC X. { z } ) ) ) |
167 |
|
eqid |
|- ( deg ` Q ) = ( deg ` Q ) |
168 |
166 167
|
dgrmul |
|- ( ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { z } ) ) =/= 0p ) /\ ( Q e. ( Poly ` CC ) /\ Q =/= 0p ) ) -> ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
169 |
68 165 32 90 168
|
syl22anc |
|- ( ( ph /\ z e. R ) -> ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
170 |
157 169
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( deg ` F ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
171 |
2 170
|
eqtrid |
|- ( ( ph /\ z e. R ) -> N = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
172 |
156 171
|
fveq12d |
|- ( ( ph /\ z e. R ) -> ( A ` N ) = ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) ) |
173 |
|
eqid |
|- ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) = ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) |
174 |
|
eqid |
|- ( coeff ` Q ) = ( coeff ` Q ) |
175 |
173 174 166 167
|
coemulhi |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
176 |
68 32 175
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
177 |
158
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) = ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) ) |
178 |
|
ssid |
|- CC C_ CC |
179 |
|
plyid |
|- ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) |
180 |
178 100 179
|
mp2an |
|- Xp e. ( Poly ` CC ) |
181 |
|
plyconst |
|- ( ( CC C_ CC /\ z e. CC ) -> ( CC X. { z } ) e. ( Poly ` CC ) ) |
182 |
178 50 181
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( CC X. { z } ) e. ( Poly ` CC ) ) |
183 |
|
eqid |
|- ( coeff ` Xp ) = ( coeff ` Xp ) |
184 |
|
eqid |
|- ( coeff ` ( CC X. { z } ) ) = ( coeff ` ( CC X. { z } ) ) |
185 |
183 184
|
coesub |
|- ( ( Xp e. ( Poly ` CC ) /\ ( CC X. { z } ) e. ( Poly ` CC ) ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) = ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ) |
186 |
180 182 185
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) = ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ) |
187 |
186
|
fveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) = ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) ) |
188 |
|
1nn0 |
|- 1 e. NN0 |
189 |
183
|
coef3 |
|- ( Xp e. ( Poly ` CC ) -> ( coeff ` Xp ) : NN0 --> CC ) |
190 |
|
ffn |
|- ( ( coeff ` Xp ) : NN0 --> CC -> ( coeff ` Xp ) Fn NN0 ) |
191 |
180 189 190
|
mp2b |
|- ( coeff ` Xp ) Fn NN0 |
192 |
191
|
a1i |
|- ( ( ph /\ z e. R ) -> ( coeff ` Xp ) Fn NN0 ) |
193 |
184
|
coef3 |
|- ( ( CC X. { z } ) e. ( Poly ` CC ) -> ( coeff ` ( CC X. { z } ) ) : NN0 --> CC ) |
194 |
|
ffn |
|- ( ( coeff ` ( CC X. { z } ) ) : NN0 --> CC -> ( coeff ` ( CC X. { z } ) ) Fn NN0 ) |
195 |
182 193 194
|
3syl |
|- ( ( ph /\ z e. R ) -> ( coeff ` ( CC X. { z } ) ) Fn NN0 ) |
196 |
|
nn0ex |
|- NN0 e. _V |
197 |
196
|
a1i |
|- ( ( ph /\ z e. R ) -> NN0 e. _V ) |
198 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
199 |
|
coeidp |
|- ( 1 e. NN0 -> ( ( coeff ` Xp ) ` 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
200 |
199
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( coeff ` Xp ) ` 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
201 |
|
eqid |
|- 1 = 1 |
202 |
201
|
iftruei |
|- if ( 1 = 1 , 1 , 0 ) = 1 |
203 |
200 202
|
eqtrdi |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( coeff ` Xp ) ` 1 ) = 1 ) |
204 |
|
0lt1 |
|- 0 < 1 |
205 |
|
0re |
|- 0 e. RR |
206 |
|
1re |
|- 1 e. RR |
207 |
205 206
|
ltnlei |
|- ( 0 < 1 <-> -. 1 <_ 0 ) |
208 |
204 207
|
mpbi |
|- -. 1 <_ 0 |
209 |
50
|
adantr |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> z e. CC ) |
210 |
|
0dgr |
|- ( z e. CC -> ( deg ` ( CC X. { z } ) ) = 0 ) |
211 |
209 210
|
syl |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( deg ` ( CC X. { z } ) ) = 0 ) |
212 |
211
|
breq2d |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( 1 <_ ( deg ` ( CC X. { z } ) ) <-> 1 <_ 0 ) ) |
213 |
208 212
|
mtbiri |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> -. 1 <_ ( deg ` ( CC X. { z } ) ) ) |
214 |
|
eqid |
|- ( deg ` ( CC X. { z } ) ) = ( deg ` ( CC X. { z } ) ) |
215 |
184 214
|
dgrub |
|- ( ( ( CC X. { z } ) e. ( Poly ` CC ) /\ 1 e. NN0 /\ ( ( coeff ` ( CC X. { z } ) ) ` 1 ) =/= 0 ) -> 1 <_ ( deg ` ( CC X. { z } ) ) ) |
216 |
215
|
3expia |
|- ( ( ( CC X. { z } ) e. ( Poly ` CC ) /\ 1 e. NN0 ) -> ( ( ( coeff ` ( CC X. { z } ) ) ` 1 ) =/= 0 -> 1 <_ ( deg ` ( CC X. { z } ) ) ) ) |
217 |
182 216
|
sylan |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( ( coeff ` ( CC X. { z } ) ) ` 1 ) =/= 0 -> 1 <_ ( deg ` ( CC X. { z } ) ) ) ) |
218 |
217
|
necon1bd |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( -. 1 <_ ( deg ` ( CC X. { z } ) ) -> ( ( coeff ` ( CC X. { z } ) ) ` 1 ) = 0 ) ) |
219 |
213 218
|
mpd |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( coeff ` ( CC X. { z } ) ) ` 1 ) = 0 ) |
220 |
192 195 197 197 198 203 219
|
ofval |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) = ( 1 - 0 ) ) |
221 |
188 220
|
mpan2 |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) = ( 1 - 0 ) ) |
222 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
223 |
221 222
|
eqtrdi |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) = 1 ) |
224 |
187 223
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) = 1 ) |
225 |
177 224
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) = 1 ) |
226 |
225
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) = ( 1 x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
227 |
174
|
coef3 |
|- ( Q e. ( Poly ` CC ) -> ( coeff ` Q ) : NN0 --> CC ) |
228 |
32 227
|
syl |
|- ( ( ph /\ z e. R ) -> ( coeff ` Q ) : NN0 --> CC ) |
229 |
228 34
|
ffvelrnd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( deg ` Q ) ) e. CC ) |
230 |
229
|
mulid2d |
|- ( ( ph /\ z e. R ) -> ( 1 x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
231 |
226 230
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
232 |
172 176 231
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> ( A ` N ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
233 |
154 232
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) = ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
234 |
233
|
negeqd |
|- ( ( ph /\ z e. R ) -> -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
235 |
153 234
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) |
236 |
133 235
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( sum_ x e. { z } x + sum_ x e. ( `' Q " { 0 } ) x ) = ( -u -u z + -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
237 |
50
|
negcld |
|- ( ( ph /\ z e. R ) -> -u z e. CC ) |
238 |
|
nnm1nn0 |
|- ( D e. NN -> ( D - 1 ) e. NN0 ) |
239 |
6 238
|
syl |
|- ( ph -> ( D - 1 ) e. NN0 ) |
240 |
239
|
adantr |
|- ( ( ph /\ z e. R ) -> ( D - 1 ) e. NN0 ) |
241 |
228 240
|
ffvelrnd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( D - 1 ) ) e. CC ) |
242 |
232 229
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> ( A ` N ) e. CC ) |
243 |
2 1
|
dgreq0 |
|- ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
244 |
43 243
|
syl |
|- ( ( ph /\ z e. R ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
245 |
244
|
necon3bid |
|- ( ( ph /\ z e. R ) -> ( F =/= 0p <-> ( A ` N ) =/= 0 ) ) |
246 |
82 245
|
mpbid |
|- ( ( ph /\ z e. R ) -> ( A ` N ) =/= 0 ) |
247 |
241 242 246
|
divcld |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) e. CC ) |
248 |
237 247
|
negdid |
|- ( ( ph /\ z e. R ) -> -u ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = ( -u -u z + -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
249 |
237 242
|
mulcld |
|- ( ( ph /\ z e. R ) -> ( -u z x. ( A ` N ) ) e. CC ) |
250 |
249 241 242 246
|
divdird |
|- ( ( ph /\ z e. R ) -> ( ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) / ( A ` N ) ) = ( ( ( -u z x. ( A ` N ) ) / ( A ` N ) ) + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
251 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
252 |
11 251
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
253 |
252
|
adantr |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) e. NN0 ) |
254 |
173 174
|
coemul |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) /\ ( N - 1 ) e. NN0 ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( N - 1 ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
255 |
68 32 253 254
|
syl3anc |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( N - 1 ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
256 |
156
|
fveq1d |
|- ( ( ph /\ z e. R ) -> ( A ` ( N - 1 ) ) = ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( N - 1 ) ) ) |
257 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
258 |
257
|
oveq2i |
|- ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
259 |
258
|
sumeq1i |
|- sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) |
260 |
|
0nn0 |
|- 0 e. NN0 |
261 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
262 |
260 261
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
263 |
262
|
a1i |
|- ( ( ph /\ z e. R ) -> 0 e. ( ZZ>= ` 0 ) ) |
264 |
258
|
eleq2i |
|- ( k e. ( 0 ... 1 ) <-> k e. ( 0 ... ( 0 + 1 ) ) ) |
265 |
173
|
coef3 |
|- ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) : NN0 --> CC ) |
266 |
68 265
|
syl |
|- ( ( ph /\ z e. R ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) : NN0 --> CC ) |
267 |
|
elfznn0 |
|- ( k e. ( 0 ... 1 ) -> k e. NN0 ) |
268 |
|
ffvelrn |
|- ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) : NN0 --> CC /\ k e. NN0 ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) e. CC ) |
269 |
266 267 268
|
syl2an |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) e. CC ) |
270 |
7
|
oveq1d |
|- ( ph -> ( ( D + 1 ) - 1 ) = ( N - 1 ) ) |
271 |
|
pncan |
|- ( ( D e. CC /\ 1 e. CC ) -> ( ( D + 1 ) - 1 ) = D ) |
272 |
101 100 271
|
sylancl |
|- ( ph -> ( ( D + 1 ) - 1 ) = D ) |
273 |
270 272
|
eqtr3d |
|- ( ph -> ( N - 1 ) = D ) |
274 |
273
|
adantr |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) = D ) |
275 |
6
|
adantr |
|- ( ( ph /\ z e. R ) -> D e. NN ) |
276 |
274 275
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) e. NN ) |
277 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
278 |
276 277
|
eleqtrdi |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) |
279 |
|
fzss2 |
|- ( ( N - 1 ) e. ( ZZ>= ` 1 ) -> ( 0 ... 1 ) C_ ( 0 ... ( N - 1 ) ) ) |
280 |
278 279
|
syl |
|- ( ( ph /\ z e. R ) -> ( 0 ... 1 ) C_ ( 0 ... ( N - 1 ) ) ) |
281 |
280
|
sselda |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) |
282 |
|
fznn0sub |
|- ( k e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
283 |
|
ffvelrn |
|- ( ( ( coeff ` Q ) : NN0 --> CC /\ ( ( N - 1 ) - k ) e. NN0 ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
284 |
228 282 283
|
syl2an |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
285 |
281 284
|
syldan |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
286 |
269 285
|
mulcld |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) e. CC ) |
287 |
264 286
|
sylan2br |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... ( 0 + 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) e. CC ) |
288 |
|
id |
|- ( k = ( 0 + 1 ) -> k = ( 0 + 1 ) ) |
289 |
288 257
|
eqtr4di |
|- ( k = ( 0 + 1 ) -> k = 1 ) |
290 |
289
|
fveq2d |
|- ( k = ( 0 + 1 ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) ) |
291 |
289
|
oveq2d |
|- ( k = ( 0 + 1 ) -> ( ( N - 1 ) - k ) = ( ( N - 1 ) - 1 ) ) |
292 |
291
|
fveq2d |
|- ( k = ( 0 + 1 ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) = ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) |
293 |
290 292
|
oveq12d |
|- ( k = ( 0 + 1 ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) |
294 |
263 287 293
|
fsump1 |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) + ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) ) |
295 |
259 294
|
eqtrid |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) + ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) ) |
296 |
|
eldifn |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> -. k e. ( 0 ... 1 ) ) |
297 |
296
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> -. k e. ( 0 ... 1 ) ) |
298 |
|
eldifi |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) |
299 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
300 |
298 299
|
syl |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> k e. NN0 ) |
301 |
173 166
|
dgrub |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ k e. NN0 /\ ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 ) -> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) |
302 |
301
|
3expia |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ k e. NN0 ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 -> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) ) |
303 |
68 300 302
|
syl2an |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 -> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) ) |
304 |
|
elfzuz |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. ( ZZ>= ` 0 ) ) |
305 |
298 304
|
syl |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> k e. ( ZZ>= ` 0 ) ) |
306 |
305
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> k e. ( ZZ>= ` 0 ) ) |
307 |
|
1z |
|- 1 e. ZZ |
308 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ 1 e. ZZ ) -> ( k e. ( 0 ... 1 ) <-> k <_ 1 ) ) |
309 |
306 307 308
|
sylancl |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( k e. ( 0 ... 1 ) <-> k <_ 1 ) ) |
310 |
158
|
breq2d |
|- ( ( ph /\ z e. R ) -> ( k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) <-> k <_ 1 ) ) |
311 |
310
|
adantr |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) <-> k <_ 1 ) ) |
312 |
309 311
|
bitr4d |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( k e. ( 0 ... 1 ) <-> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) ) |
313 |
303 312
|
sylibrd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 -> k e. ( 0 ... 1 ) ) ) |
314 |
313
|
necon1bd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( -. k e. ( 0 ... 1 ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = 0 ) ) |
315 |
297 314
|
mpd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = 0 ) |
316 |
315
|
oveq1d |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( 0 x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
317 |
298 284
|
sylan2 |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
318 |
317
|
mul02d |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( 0 x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = 0 ) |
319 |
316 318
|
eqtrd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = 0 ) |
320 |
|
fzfid |
|- ( ( ph /\ z e. R ) -> ( 0 ... ( N - 1 ) ) e. Fin ) |
321 |
280 286 319 320
|
fsumss |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
322 |
|
0z |
|- 0 e. ZZ |
323 |
186
|
fveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) = ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) ) |
324 |
|
coeidp |
|- ( 0 e. NN0 -> ( ( coeff ` Xp ) ` 0 ) = if ( 0 = 1 , 1 , 0 ) ) |
325 |
159
|
nesymi |
|- -. 0 = 1 |
326 |
325
|
iffalsei |
|- if ( 0 = 1 , 1 , 0 ) = 0 |
327 |
324 326
|
eqtrdi |
|- ( 0 e. NN0 -> ( ( coeff ` Xp ) ` 0 ) = 0 ) |
328 |
327
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ 0 e. NN0 ) -> ( ( coeff ` Xp ) ` 0 ) = 0 ) |
329 |
184
|
coefv0 |
|- ( ( CC X. { z } ) e. ( Poly ` CC ) -> ( ( CC X. { z } ) ` 0 ) = ( ( coeff ` ( CC X. { z } ) ) ` 0 ) ) |
330 |
182 329
|
syl |
|- ( ( ph /\ z e. R ) -> ( ( CC X. { z } ) ` 0 ) = ( ( coeff ` ( CC X. { z } ) ) ` 0 ) ) |
331 |
|
0cn |
|- 0 e. CC |
332 |
|
vex |
|- z e. _V |
333 |
332
|
fvconst2 |
|- ( 0 e. CC -> ( ( CC X. { z } ) ` 0 ) = z ) |
334 |
331 333
|
ax-mp |
|- ( ( CC X. { z } ) ` 0 ) = z |
335 |
330 334
|
eqtr3di |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( CC X. { z } ) ) ` 0 ) = z ) |
336 |
335
|
adantr |
|- ( ( ( ph /\ z e. R ) /\ 0 e. NN0 ) -> ( ( coeff ` ( CC X. { z } ) ) ` 0 ) = z ) |
337 |
192 195 197 197 198 328 336
|
ofval |
|- ( ( ( ph /\ z e. R ) /\ 0 e. NN0 ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) = ( 0 - z ) ) |
338 |
260 337
|
mpan2 |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) = ( 0 - z ) ) |
339 |
|
df-neg |
|- -u z = ( 0 - z ) |
340 |
338 339
|
eqtr4di |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) = -u z ) |
341 |
323 340
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) = -u z ) |
342 |
274
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( N - 1 ) - 0 ) = ( D - 0 ) ) |
343 |
102
|
subid1d |
|- ( ( ph /\ z e. R ) -> ( D - 0 ) = D ) |
344 |
342 343 31
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( N - 1 ) - 0 ) = ( deg ` Q ) ) |
345 |
344
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
346 |
345 232
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) = ( A ` N ) ) |
347 |
341 346
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) = ( -u z x. ( A ` N ) ) ) |
348 |
347 249
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) e. CC ) |
349 |
|
fveq2 |
|- ( k = 0 -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) ) |
350 |
|
oveq2 |
|- ( k = 0 -> ( ( N - 1 ) - k ) = ( ( N - 1 ) - 0 ) ) |
351 |
350
|
fveq2d |
|- ( k = 0 -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) = ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) |
352 |
349 351
|
oveq12d |
|- ( k = 0 -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) ) |
353 |
352
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) ) |
354 |
322 348 353
|
sylancr |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) ) |
355 |
354 347
|
eqtrd |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( -u z x. ( A ` N ) ) ) |
356 |
274
|
fvoveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) = ( ( coeff ` Q ) ` ( D - 1 ) ) ) |
357 |
224 356
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) = ( 1 x. ( ( coeff ` Q ) ` ( D - 1 ) ) ) ) |
358 |
241
|
mulid2d |
|- ( ( ph /\ z e. R ) -> ( 1 x. ( ( coeff ` Q ) ` ( D - 1 ) ) ) = ( ( coeff ` Q ) ` ( D - 1 ) ) ) |
359 |
357 358
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) = ( ( coeff ` Q ) ` ( D - 1 ) ) ) |
360 |
355 359
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) + ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) = ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) ) |
361 |
295 321 360
|
3eqtr3rd |
|- ( ( ph /\ z e. R ) -> ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
362 |
255 256 361
|
3eqtr4rd |
|- ( ( ph /\ z e. R ) -> ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) = ( A ` ( N - 1 ) ) ) |
363 |
362
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) / ( A ` N ) ) = ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
364 |
237 242 246
|
divcan4d |
|- ( ( ph /\ z e. R ) -> ( ( -u z x. ( A ` N ) ) / ( A ` N ) ) = -u z ) |
365 |
364
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( ( -u z x. ( A ` N ) ) / ( A ` N ) ) + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
366 |
250 363 365
|
3eqtr3rd |
|- ( ( ph /\ z e. R ) -> ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
367 |
366
|
negeqd |
|- ( ( ph /\ z e. R ) -> -u ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
368 |
248 367
|
eqtr3d |
|- ( ( ph /\ z e. R ) -> ( -u -u z + -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
369 |
128 236 368
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
370 |
28 369
|
exlimddv |
|- ( ph -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |