Metamath Proof Explorer


Theorem viin

Description: Indexed intersection with a universal index class. When A doesn't depend on x , this evaluates to A by 19.3 and abid2 . When A = x , this evaluates to (/) by intiin and intv . (Contributed by NM, 11-Sep-2008)

Ref Expression
Assertion viin
|- |^|_ x e. _V A = { y | A. x y e. A }

Proof

Step Hyp Ref Expression
1 df-iin
 |-  |^|_ x e. _V A = { y | A. x e. _V y e. A }
2 ralv
 |-  ( A. x e. _V y e. A <-> A. x y e. A )
3 2 abbii
 |-  { y | A. x e. _V y e. A } = { y | A. x y e. A }
4 1 3 eqtri
 |-  |^|_ x e. _V A = { y | A. x y e. A }