| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex |  |-  RR e. _V | 
						
							| 2 | 1 | pwex |  |-  ~P RR e. _V | 
						
							| 3 |  | weinxp |  |-  ( .< We RR <-> ( .< i^i ( RR X. RR ) ) We RR ) | 
						
							| 4 |  | unipw |  |-  U. ~P RR = RR | 
						
							| 5 |  | weeq2 |  |-  ( U. ~P RR = RR -> ( ( .< i^i ( RR X. RR ) ) We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We RR ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( ( .< i^i ( RR X. RR ) ) We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We RR ) | 
						
							| 7 | 3 6 | bitr4i |  |-  ( .< We RR <-> ( .< i^i ( RR X. RR ) ) We U. ~P RR ) | 
						
							| 8 | 1 1 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 9 | 8 | inex2 |  |-  ( .< i^i ( RR X. RR ) ) e. _V | 
						
							| 10 |  | weeq1 |  |-  ( x = ( .< i^i ( RR X. RR ) ) -> ( x We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We U. ~P RR ) ) | 
						
							| 11 | 9 10 | spcev |  |-  ( ( .< i^i ( RR X. RR ) ) We U. ~P RR -> E. x x We U. ~P RR ) | 
						
							| 12 | 7 11 | sylbi |  |-  ( .< We RR -> E. x x We U. ~P RR ) | 
						
							| 13 |  | dfac8c |  |-  ( ~P RR e. _V -> ( E. x x We U. ~P RR -> E. f A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) ) | 
						
							| 14 | 2 12 13 | mpsyl |  |-  ( .< We RR -> E. f A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) | 
						
							| 15 |  | qex |  |-  QQ e. _V | 
						
							| 16 | 15 | inex1 |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) e. _V | 
						
							| 17 |  | nnrecq |  |-  ( x e. NN -> ( 1 / x ) e. QQ ) | 
						
							| 18 |  | nnrecre |  |-  ( x e. NN -> ( 1 / x ) e. RR ) | 
						
							| 19 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 20 | 19 | a1i |  |-  ( x e. NN -> -u 1 e. RR ) | 
						
							| 21 |  | 0re |  |-  0 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( x e. NN -> 0 e. RR ) | 
						
							| 23 |  | neg1lt0 |  |-  -u 1 < 0 | 
						
							| 24 | 19 21 23 | ltleii |  |-  -u 1 <_ 0 | 
						
							| 25 | 24 | a1i |  |-  ( x e. NN -> -u 1 <_ 0 ) | 
						
							| 26 |  | nnrp |  |-  ( x e. NN -> x e. RR+ ) | 
						
							| 27 | 26 | rpreccld |  |-  ( x e. NN -> ( 1 / x ) e. RR+ ) | 
						
							| 28 | 27 | rpge0d |  |-  ( x e. NN -> 0 <_ ( 1 / x ) ) | 
						
							| 29 | 20 22 18 25 28 | letrd |  |-  ( x e. NN -> -u 1 <_ ( 1 / x ) ) | 
						
							| 30 |  | nnge1 |  |-  ( x e. NN -> 1 <_ x ) | 
						
							| 31 |  | nnre |  |-  ( x e. NN -> x e. RR ) | 
						
							| 32 |  | nngt0 |  |-  ( x e. NN -> 0 < x ) | 
						
							| 33 |  | 1re |  |-  1 e. RR | 
						
							| 34 |  | 0lt1 |  |-  0 < 1 | 
						
							| 35 |  | lerec |  |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( x e. RR /\ 0 < x ) ) -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) | 
						
							| 36 | 33 34 35 | mpanl12 |  |-  ( ( x e. RR /\ 0 < x ) -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) | 
						
							| 37 | 31 32 36 | syl2anc |  |-  ( x e. NN -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) | 
						
							| 38 | 30 37 | mpbid |  |-  ( x e. NN -> ( 1 / x ) <_ ( 1 / 1 ) ) | 
						
							| 39 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 40 | 38 39 | breqtrdi |  |-  ( x e. NN -> ( 1 / x ) <_ 1 ) | 
						
							| 41 | 19 33 | elicc2i |  |-  ( ( 1 / x ) e. ( -u 1 [,] 1 ) <-> ( ( 1 / x ) e. RR /\ -u 1 <_ ( 1 / x ) /\ ( 1 / x ) <_ 1 ) ) | 
						
							| 42 | 18 29 40 41 | syl3anbrc |  |-  ( x e. NN -> ( 1 / x ) e. ( -u 1 [,] 1 ) ) | 
						
							| 43 | 17 42 | elind |  |-  ( x e. NN -> ( 1 / x ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 44 |  | oveq2 |  |-  ( ( 1 / x ) = ( 1 / y ) -> ( 1 / ( 1 / x ) ) = ( 1 / ( 1 / y ) ) ) | 
						
							| 45 |  | nncn |  |-  ( x e. NN -> x e. CC ) | 
						
							| 46 |  | nnne0 |  |-  ( x e. NN -> x =/= 0 ) | 
						
							| 47 | 45 46 | recrecd |  |-  ( x e. NN -> ( 1 / ( 1 / x ) ) = x ) | 
						
							| 48 |  | nncn |  |-  ( y e. NN -> y e. CC ) | 
						
							| 49 |  | nnne0 |  |-  ( y e. NN -> y =/= 0 ) | 
						
							| 50 | 48 49 | recrecd |  |-  ( y e. NN -> ( 1 / ( 1 / y ) ) = y ) | 
						
							| 51 | 47 50 | eqeqan12d |  |-  ( ( x e. NN /\ y e. NN ) -> ( ( 1 / ( 1 / x ) ) = ( 1 / ( 1 / y ) ) <-> x = y ) ) | 
						
							| 52 | 44 51 | imbitrid |  |-  ( ( x e. NN /\ y e. NN ) -> ( ( 1 / x ) = ( 1 / y ) -> x = y ) ) | 
						
							| 53 |  | oveq2 |  |-  ( x = y -> ( 1 / x ) = ( 1 / y ) ) | 
						
							| 54 | 52 53 | impbid1 |  |-  ( ( x e. NN /\ y e. NN ) -> ( ( 1 / x ) = ( 1 / y ) <-> x = y ) ) | 
						
							| 55 | 43 54 | dom2 |  |-  ( ( QQ i^i ( -u 1 [,] 1 ) ) e. _V -> NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 56 | 16 55 | ax-mp |  |-  NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) | 
						
							| 57 |  | inss1 |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ | 
						
							| 58 |  | ssdomg |  |-  ( QQ e. _V -> ( ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ -> ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ ) ) | 
						
							| 59 | 15 57 58 | mp2 |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ | 
						
							| 60 |  | qnnen |  |-  QQ ~~ NN | 
						
							| 61 |  | domentr |  |-  ( ( ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ /\ QQ ~~ NN ) -> ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN ) | 
						
							| 62 | 59 60 61 | mp2an |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN | 
						
							| 63 |  | sbth |  |-  ( ( NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN ) -> NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 64 | 56 62 63 | mp2an |  |-  NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) | 
						
							| 65 |  | bren |  |-  ( NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) <-> E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 66 | 64 65 | mpbi |  |-  E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) | 
						
							| 67 |  | eleq1w |  |-  ( a = x -> ( a e. ( 0 [,] 1 ) <-> x e. ( 0 [,] 1 ) ) ) | 
						
							| 68 |  | eleq1w |  |-  ( b = y -> ( b e. ( 0 [,] 1 ) <-> y e. ( 0 [,] 1 ) ) ) | 
						
							| 69 | 67 68 | bi2anan9 |  |-  ( ( a = x /\ b = y ) -> ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) <-> ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) ) | 
						
							| 70 |  | oveq12 |  |-  ( ( a = x /\ b = y ) -> ( a - b ) = ( x - y ) ) | 
						
							| 71 | 70 | eleq1d |  |-  ( ( a = x /\ b = y ) -> ( ( a - b ) e. QQ <-> ( x - y ) e. QQ ) ) | 
						
							| 72 | 69 71 | anbi12d |  |-  ( ( a = x /\ b = y ) -> ( ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) <-> ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) ) ) | 
						
							| 73 | 72 | cbvopabv |  |-  { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } | 
						
							| 74 |  | eqid |  |-  ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) = ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) | 
						
							| 75 |  | fvex |  |-  ( f ` c ) e. _V | 
						
							| 76 |  | eqid |  |-  ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) = ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) | 
						
							| 77 | 75 76 | fnmpti |  |-  ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) Fn ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) | 
						
							| 78 | 77 | a1i |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) Fn ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ) | 
						
							| 79 |  | neeq1 |  |-  ( z = w -> ( z =/= (/) <-> w =/= (/) ) ) | 
						
							| 80 |  | fveq2 |  |-  ( z = w -> ( f ` z ) = ( f ` w ) ) | 
						
							| 81 |  | id |  |-  ( z = w -> z = w ) | 
						
							| 82 | 80 81 | eleq12d |  |-  ( z = w -> ( ( f ` z ) e. z <-> ( f ` w ) e. w ) ) | 
						
							| 83 | 79 82 | imbi12d |  |-  ( z = w -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( w =/= (/) -> ( f ` w ) e. w ) ) ) | 
						
							| 84 | 83 | cbvralvw |  |-  ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) <-> A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) ) | 
						
							| 85 | 73 | vitalilem1 |  |-  { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } Er ( 0 [,] 1 ) | 
						
							| 86 | 85 | a1i |  |-  ( T. -> { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } Er ( 0 [,] 1 ) ) | 
						
							| 87 | 86 | qsss |  |-  ( T. -> ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P ( 0 [,] 1 ) ) | 
						
							| 88 | 87 | mptru |  |-  ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P ( 0 [,] 1 ) | 
						
							| 89 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 90 | 89 | sspwi |  |-  ~P ( 0 [,] 1 ) C_ ~P RR | 
						
							| 91 | 88 90 | sstri |  |-  ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P RR | 
						
							| 92 |  | ssralv |  |-  ( ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P RR -> ( A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) ) | 
						
							| 93 | 91 92 | ax-mp |  |-  ( A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) | 
						
							| 94 | 84 93 | sylbi |  |-  ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) | 
						
							| 95 |  | fveq2 |  |-  ( c = w -> ( f ` c ) = ( f ` w ) ) | 
						
							| 96 |  | fvex |  |-  ( f ` w ) e. _V | 
						
							| 97 | 95 76 96 | fvmpt |  |-  ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) = ( f ` w ) ) | 
						
							| 98 | 97 | eleq1d |  |-  ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w <-> ( f ` w ) e. w ) ) | 
						
							| 99 | 98 | imbi2d |  |-  ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) <-> ( w =/= (/) -> ( f ` w ) e. w ) ) ) | 
						
							| 100 | 99 | ralbiia |  |-  ( A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) <-> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) | 
						
							| 101 | 94 100 | sylibr |  |-  ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) ) | 
						
							| 102 | 101 | ad2antlr |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) ) | 
						
							| 103 |  | simprl |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 104 |  | oveq1 |  |-  ( t = s -> ( t - ( g ` m ) ) = ( s - ( g ` m ) ) ) | 
						
							| 105 | 104 | eleq1d |  |-  ( t = s -> ( ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) <-> ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ) ) | 
						
							| 106 | 105 | cbvrabv |  |-  { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } | 
						
							| 107 |  | fveq2 |  |-  ( m = n -> ( g ` m ) = ( g ` n ) ) | 
						
							| 108 | 107 | oveq2d |  |-  ( m = n -> ( s - ( g ` m ) ) = ( s - ( g ` n ) ) ) | 
						
							| 109 | 108 | eleq1d |  |-  ( m = n -> ( ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) <-> ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ) ) | 
						
							| 110 | 109 | rabbidv |  |-  ( m = n -> { s e. RR | ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) | 
						
							| 111 | 106 110 | eqtrid |  |-  ( m = n -> { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) | 
						
							| 112 | 111 | cbvmptv |  |-  ( m e. NN |-> { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) = ( n e. NN |-> { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) | 
						
							| 113 |  | simprr |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) | 
						
							| 114 | 73 74 78 102 103 112 113 | vitalilem5 |  |-  -. ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) | 
						
							| 115 | 114 | pm2.21i |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) | 
						
							| 116 | 115 | expr |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ( -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) | 
						
							| 117 | 116 | pm2.18d |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) | 
						
							| 118 |  | eldif |  |-  ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) <-> ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) ) | 
						
							| 119 |  | mblss |  |-  ( x e. dom vol -> x C_ RR ) | 
						
							| 120 |  | velpw |  |-  ( x e. ~P RR <-> x C_ RR ) | 
						
							| 121 | 119 120 | sylibr |  |-  ( x e. dom vol -> x e. ~P RR ) | 
						
							| 122 | 121 | ssriv |  |-  dom vol C_ ~P RR | 
						
							| 123 |  | ssnelpss |  |-  ( dom vol C_ ~P RR -> ( ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) -> dom vol C. ~P RR ) ) | 
						
							| 124 | 122 123 | ax-mp |  |-  ( ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) -> dom vol C. ~P RR ) | 
						
							| 125 | 118 124 | sylbi |  |-  ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) -> dom vol C. ~P RR ) | 
						
							| 126 | 117 125 | syl |  |-  ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> dom vol C. ~P RR ) | 
						
							| 127 | 126 | ex |  |-  ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> dom vol C. ~P RR ) ) | 
						
							| 128 | 127 | exlimdv |  |-  ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> dom vol C. ~P RR ) ) | 
						
							| 129 | 66 128 | mpi |  |-  ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> dom vol C. ~P RR ) | 
						
							| 130 | 14 129 | exlimddv |  |-  ( .< We RR -> dom vol C. ~P RR ) |