Step |
Hyp |
Ref |
Expression |
1 |
|
vitali.1 |
|- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
2 |
|
vitali.2 |
|- S = ( ( 0 [,] 1 ) /. .~ ) |
3 |
|
vitali.3 |
|- ( ph -> F Fn S ) |
4 |
|
vitali.4 |
|- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
5 |
|
vitali.5 |
|- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
6 |
|
vitali.6 |
|- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
7 |
|
vitali.7 |
|- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
8 |
|
neeq1 |
|- ( [ v ] .~ = z -> ( [ v ] .~ =/= (/) <-> z =/= (/) ) ) |
9 |
1
|
vitalilem1 |
|- .~ Er ( 0 [,] 1 ) |
10 |
|
erdm |
|- ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) |
11 |
9 10
|
ax-mp |
|- dom .~ = ( 0 [,] 1 ) |
12 |
11
|
eleq2i |
|- ( v e. dom .~ <-> v e. ( 0 [,] 1 ) ) |
13 |
|
ecdmn0 |
|- ( v e. dom .~ <-> [ v ] .~ =/= (/) ) |
14 |
12 13
|
bitr3i |
|- ( v e. ( 0 [,] 1 ) <-> [ v ] .~ =/= (/) ) |
15 |
14
|
biimpi |
|- ( v e. ( 0 [,] 1 ) -> [ v ] .~ =/= (/) ) |
16 |
2 8 15
|
ectocl |
|- ( z e. S -> z =/= (/) ) |
17 |
16
|
adantl |
|- ( ( ph /\ z e. S ) -> z =/= (/) ) |
18 |
|
sseq1 |
|- ( [ w ] .~ = z -> ( [ w ] .~ C_ ( 0 [,] 1 ) <-> z C_ ( 0 [,] 1 ) ) ) |
19 |
9
|
a1i |
|- ( w e. ( 0 [,] 1 ) -> .~ Er ( 0 [,] 1 ) ) |
20 |
19
|
ecss |
|- ( w e. ( 0 [,] 1 ) -> [ w ] .~ C_ ( 0 [,] 1 ) ) |
21 |
2 18 20
|
ectocl |
|- ( z e. S -> z C_ ( 0 [,] 1 ) ) |
22 |
21
|
adantl |
|- ( ( ph /\ z e. S ) -> z C_ ( 0 [,] 1 ) ) |
23 |
22
|
sseld |
|- ( ( ph /\ z e. S ) -> ( ( F ` z ) e. z -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
24 |
17 23
|
embantd |
|- ( ( ph /\ z e. S ) -> ( ( z =/= (/) -> ( F ` z ) e. z ) -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
25 |
24
|
ralimdva |
|- ( ph -> ( A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
26 |
4 25
|
mpd |
|- ( ph -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) |
27 |
|
ffnfv |
|- ( F : S --> ( 0 [,] 1 ) <-> ( F Fn S /\ A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
28 |
3 26 27
|
sylanbrc |
|- ( ph -> F : S --> ( 0 [,] 1 ) ) |
29 |
28
|
frnd |
|- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
30 |
5
|
adantr |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
31 |
|
f1ocnv |
|- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) -1-1-onto-> NN ) |
32 |
|
f1of |
|- ( `' G : ( QQ i^i ( -u 1 [,] 1 ) ) -1-1-onto-> NN -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) --> NN ) |
33 |
30 31 32
|
3syl |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) --> NN ) |
34 |
|
simpr |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) |
35 |
34 14
|
sylib |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ =/= (/) ) |
36 |
|
neeq1 |
|- ( z = [ v ] .~ -> ( z =/= (/) <-> [ v ] .~ =/= (/) ) ) |
37 |
|
fveq2 |
|- ( z = [ v ] .~ -> ( F ` z ) = ( F ` [ v ] .~ ) ) |
38 |
|
id |
|- ( z = [ v ] .~ -> z = [ v ] .~ ) |
39 |
37 38
|
eleq12d |
|- ( z = [ v ] .~ -> ( ( F ` z ) e. z <-> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
40 |
36 39
|
imbi12d |
|- ( z = [ v ] .~ -> ( ( z =/= (/) -> ( F ` z ) e. z ) <-> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) ) |
41 |
4
|
adantr |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
42 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
43 |
|
erex |
|- ( .~ Er ( 0 [,] 1 ) -> ( ( 0 [,] 1 ) e. _V -> .~ e. _V ) ) |
44 |
9 42 43
|
mp2 |
|- .~ e. _V |
45 |
44
|
ecelqsi |
|- ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) |
47 |
46 2
|
eleqtrrdi |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. S ) |
48 |
40 41 47
|
rspcdva |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
49 |
35 48
|
mpd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) |
50 |
|
fvex |
|- ( F ` [ v ] .~ ) e. _V |
51 |
|
vex |
|- v e. _V |
52 |
50 51
|
elec |
|- ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> v .~ ( F ` [ v ] .~ ) ) |
53 |
|
oveq12 |
|- ( ( x = v /\ y = ( F ` [ v ] .~ ) ) -> ( x - y ) = ( v - ( F ` [ v ] .~ ) ) ) |
54 |
53
|
eleq1d |
|- ( ( x = v /\ y = ( F ` [ v ] .~ ) ) -> ( ( x - y ) e. QQ <-> ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
55 |
54 1
|
brab2a |
|- ( v .~ ( F ` [ v ] .~ ) <-> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
56 |
52 55
|
bitri |
|- ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
57 |
49 56
|
sylib |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
58 |
57
|
simprd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. QQ ) |
59 |
|
elicc01 |
|- ( v e. ( 0 [,] 1 ) <-> ( v e. RR /\ 0 <_ v /\ v <_ 1 ) ) |
60 |
34 59
|
sylib |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v e. RR /\ 0 <_ v /\ v <_ 1 ) ) |
61 |
60
|
simp1d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. RR ) |
62 |
57
|
simpld |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) ) |
63 |
62
|
simprd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) |
64 |
|
elicc01 |
|- ( ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) <-> ( ( F ` [ v ] .~ ) e. RR /\ 0 <_ ( F ` [ v ] .~ ) /\ ( F ` [ v ] .~ ) <_ 1 ) ) |
65 |
63 64
|
sylib |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) e. RR /\ 0 <_ ( F ` [ v ] .~ ) /\ ( F ` [ v ] .~ ) <_ 1 ) ) |
66 |
65
|
simp1d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. RR ) |
67 |
61 66
|
resubcld |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. RR ) |
68 |
66 61
|
resubcld |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) e. RR ) |
69 |
|
1red |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
70 |
60
|
simp2d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 0 <_ v ) |
71 |
66 61
|
subge02d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( 0 <_ v <-> ( ( F ` [ v ] .~ ) - v ) <_ ( F ` [ v ] .~ ) ) ) |
72 |
70 71
|
mpbid |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) <_ ( F ` [ v ] .~ ) ) |
73 |
65
|
simp3d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) <_ 1 ) |
74 |
68 66 69 72 73
|
letrd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) <_ 1 ) |
75 |
68 69
|
lenegd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( ( F ` [ v ] .~ ) - v ) <_ 1 <-> -u 1 <_ -u ( ( F ` [ v ] .~ ) - v ) ) ) |
76 |
74 75
|
mpbid |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u 1 <_ -u ( ( F ` [ v ] .~ ) - v ) ) |
77 |
66
|
recnd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. CC ) |
78 |
61
|
recnd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. CC ) |
79 |
77 78
|
negsubdi2d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u ( ( F ` [ v ] .~ ) - v ) = ( v - ( F ` [ v ] .~ ) ) ) |
80 |
76 79
|
breqtrd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u 1 <_ ( v - ( F ` [ v ] .~ ) ) ) |
81 |
65
|
simp2d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 0 <_ ( F ` [ v ] .~ ) ) |
82 |
61 66
|
subge02d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( 0 <_ ( F ` [ v ] .~ ) <-> ( v - ( F ` [ v ] .~ ) ) <_ v ) ) |
83 |
81 82
|
mpbid |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) <_ v ) |
84 |
60
|
simp3d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v <_ 1 ) |
85 |
67 61 69 83 84
|
letrd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) <_ 1 ) |
86 |
|
neg1rr |
|- -u 1 e. RR |
87 |
|
1re |
|- 1 e. RR |
88 |
86 87
|
elicc2i |
|- ( ( v - ( F ` [ v ] .~ ) ) e. ( -u 1 [,] 1 ) <-> ( ( v - ( F ` [ v ] .~ ) ) e. RR /\ -u 1 <_ ( v - ( F ` [ v ] .~ ) ) /\ ( v - ( F ` [ v ] .~ ) ) <_ 1 ) ) |
89 |
67 80 85 88
|
syl3anbrc |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. ( -u 1 [,] 1 ) ) |
90 |
58 89
|
elind |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
91 |
33 90
|
ffvelrnd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN ) |
92 |
|
oveq1 |
|- ( s = v -> ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) ) |
93 |
92
|
eleq1d |
|- ( s = v -> ( ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F <-> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) ) |
94 |
|
f1ocnvfv2 |
|- ( ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = ( v - ( F ` [ v ] .~ ) ) ) |
95 |
5 90 94
|
syl2an2r |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = ( v - ( F ` [ v ] .~ ) ) ) |
96 |
95
|
oveq2d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( v - ( v - ( F ` [ v ] .~ ) ) ) ) |
97 |
78 77
|
nncand |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( v - ( F ` [ v ] .~ ) ) ) = ( F ` [ v ] .~ ) ) |
98 |
96 97
|
eqtrd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( F ` [ v ] .~ ) ) |
99 |
|
fnfvelrn |
|- ( ( F Fn S /\ [ v ] .~ e. S ) -> ( F ` [ v ] .~ ) e. ran F ) |
100 |
3 47 99
|
syl2an2r |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. ran F ) |
101 |
98 100
|
eqeltrd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) |
102 |
93 61 101
|
elrabd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
103 |
|
fveq2 |
|- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( G ` n ) = ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) |
104 |
103
|
oveq2d |
|- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( s - ( G ` n ) ) = ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) ) |
105 |
104
|
eleq1d |
|- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) ) |
106 |
105
|
rabbidv |
|- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
107 |
|
reex |
|- RR e. _V |
108 |
107
|
rabex |
|- { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } e. _V |
109 |
106 6 108
|
fvmpt |
|- ( ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN -> ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
110 |
91 109
|
syl |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
111 |
102 110
|
eleqtrrd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) |
112 |
|
fveq2 |
|- ( m = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( T ` m ) = ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) |
113 |
112
|
eliuni |
|- ( ( ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN /\ v e. ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) -> v e. U_ m e. NN ( T ` m ) ) |
114 |
91 111 113
|
syl2anc |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. U_ m e. NN ( T ` m ) ) |
115 |
114
|
ex |
|- ( ph -> ( v e. ( 0 [,] 1 ) -> v e. U_ m e. NN ( T ` m ) ) ) |
116 |
115
|
ssrdv |
|- ( ph -> ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) ) |
117 |
|
eliun |
|- ( x e. U_ m e. NN ( T ` m ) <-> E. m e. NN x e. ( T ` m ) ) |
118 |
|
fveq2 |
|- ( n = m -> ( G ` n ) = ( G ` m ) ) |
119 |
118
|
oveq2d |
|- ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) |
120 |
119
|
eleq1d |
|- ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) |
121 |
120
|
rabbidv |
|- ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
122 |
107
|
rabex |
|- { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V |
123 |
121 6 122
|
fvmpt |
|- ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
124 |
123
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
125 |
124
|
eleq2d |
|- ( ( ph /\ m e. NN ) -> ( x e. ( T ` m ) <-> x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) |
126 |
125
|
biimpa |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
127 |
|
oveq1 |
|- ( s = x -> ( s - ( G ` m ) ) = ( x - ( G ` m ) ) ) |
128 |
127
|
eleq1d |
|- ( s = x -> ( ( s - ( G ` m ) ) e. ran F <-> ( x - ( G ` m ) ) e. ran F ) ) |
129 |
128
|
elrab |
|- ( x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } <-> ( x e. RR /\ ( x - ( G ` m ) ) e. ran F ) ) |
130 |
126 129
|
sylib |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x e. RR /\ ( x - ( G ` m ) ) e. ran F ) ) |
131 |
130
|
simpld |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. RR ) |
132 |
86
|
a1i |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 e. RR ) |
133 |
|
iccssre |
|- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
134 |
86 87 133
|
mp2an |
|- ( -u 1 [,] 1 ) C_ RR |
135 |
|
f1of |
|- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
136 |
5 135
|
syl |
|- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
137 |
136
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
138 |
137
|
elin2d |
|- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) |
139 |
134 138
|
sselid |
|- ( ( ph /\ m e. NN ) -> ( G ` m ) e. RR ) |
140 |
139
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) e. RR ) |
141 |
138
|
adantr |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) |
142 |
86 87
|
elicc2i |
|- ( ( G ` m ) e. ( -u 1 [,] 1 ) <-> ( ( G ` m ) e. RR /\ -u 1 <_ ( G ` m ) /\ ( G ` m ) <_ 1 ) ) |
143 |
141 142
|
sylib |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) e. RR /\ -u 1 <_ ( G ` m ) /\ ( G ` m ) <_ 1 ) ) |
144 |
143
|
simp2d |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 <_ ( G ` m ) ) |
145 |
29
|
ad2antrr |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ran F C_ ( 0 [,] 1 ) ) |
146 |
130
|
simprd |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) e. ran F ) |
147 |
145 146
|
sseldd |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) e. ( 0 [,] 1 ) ) |
148 |
|
elicc01 |
|- ( ( x - ( G ` m ) ) e. ( 0 [,] 1 ) <-> ( ( x - ( G ` m ) ) e. RR /\ 0 <_ ( x - ( G ` m ) ) /\ ( x - ( G ` m ) ) <_ 1 ) ) |
149 |
147 148
|
sylib |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( x - ( G ` m ) ) e. RR /\ 0 <_ ( x - ( G ` m ) ) /\ ( x - ( G ` m ) ) <_ 1 ) ) |
150 |
149
|
simp2d |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 0 <_ ( x - ( G ` m ) ) ) |
151 |
131 140
|
subge0d |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( 0 <_ ( x - ( G ` m ) ) <-> ( G ` m ) <_ x ) ) |
152 |
150 151
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) <_ x ) |
153 |
132 140 131 144 152
|
letrd |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 <_ x ) |
154 |
|
peano2re |
|- ( ( G ` m ) e. RR -> ( ( G ` m ) + 1 ) e. RR ) |
155 |
140 154
|
syl |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) e. RR ) |
156 |
|
2re |
|- 2 e. RR |
157 |
156
|
a1i |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 2 e. RR ) |
158 |
149
|
simp3d |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) <_ 1 ) |
159 |
|
1red |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 1 e. RR ) |
160 |
131 140 159
|
lesubadd2d |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( x - ( G ` m ) ) <_ 1 <-> x <_ ( ( G ` m ) + 1 ) ) ) |
161 |
158 160
|
mpbid |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x <_ ( ( G ` m ) + 1 ) ) |
162 |
143
|
simp3d |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) <_ 1 ) |
163 |
140 159 159 162
|
leadd1dd |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) <_ ( 1 + 1 ) ) |
164 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
165 |
163 164
|
breqtrrdi |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) <_ 2 ) |
166 |
131 155 157 161 165
|
letrd |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x <_ 2 ) |
167 |
86 156
|
elicc2i |
|- ( x e. ( -u 1 [,] 2 ) <-> ( x e. RR /\ -u 1 <_ x /\ x <_ 2 ) ) |
168 |
131 153 166 167
|
syl3anbrc |
|- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. ( -u 1 [,] 2 ) ) |
169 |
168
|
rexlimdva2 |
|- ( ph -> ( E. m e. NN x e. ( T ` m ) -> x e. ( -u 1 [,] 2 ) ) ) |
170 |
117 169
|
syl5bi |
|- ( ph -> ( x e. U_ m e. NN ( T ` m ) -> x e. ( -u 1 [,] 2 ) ) ) |
171 |
170
|
ssrdv |
|- ( ph -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) |
172 |
29 116 171
|
3jca |
|- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |