| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vitali.1 |  |-  .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } | 
						
							| 2 |  | vitali.2 |  |-  S = ( ( 0 [,] 1 ) /. .~ ) | 
						
							| 3 |  | vitali.3 |  |-  ( ph -> F Fn S ) | 
						
							| 4 |  | vitali.4 |  |-  ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 5 |  | vitali.5 |  |-  ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 6 |  | vitali.6 |  |-  T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) | 
						
							| 7 |  | vitali.7 |  |-  ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) | 
						
							| 8 |  | neeq1 |  |-  ( [ v ] .~ = z -> ( [ v ] .~ =/= (/) <-> z =/= (/) ) ) | 
						
							| 9 | 1 | vitalilem1 |  |-  .~ Er ( 0 [,] 1 ) | 
						
							| 10 |  | erdm |  |-  ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  dom .~ = ( 0 [,] 1 ) | 
						
							| 12 | 11 | eleq2i |  |-  ( v e. dom .~ <-> v e. ( 0 [,] 1 ) ) | 
						
							| 13 |  | ecdmn0 |  |-  ( v e. dom .~ <-> [ v ] .~ =/= (/) ) | 
						
							| 14 | 12 13 | bitr3i |  |-  ( v e. ( 0 [,] 1 ) <-> [ v ] .~ =/= (/) ) | 
						
							| 15 | 14 | biimpi |  |-  ( v e. ( 0 [,] 1 ) -> [ v ] .~ =/= (/) ) | 
						
							| 16 | 2 8 15 | ectocl |  |-  ( z e. S -> z =/= (/) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ z e. S ) -> z =/= (/) ) | 
						
							| 18 |  | sseq1 |  |-  ( [ w ] .~ = z -> ( [ w ] .~ C_ ( 0 [,] 1 ) <-> z C_ ( 0 [,] 1 ) ) ) | 
						
							| 19 | 9 | a1i |  |-  ( w e. ( 0 [,] 1 ) -> .~ Er ( 0 [,] 1 ) ) | 
						
							| 20 | 19 | ecss |  |-  ( w e. ( 0 [,] 1 ) -> [ w ] .~ C_ ( 0 [,] 1 ) ) | 
						
							| 21 | 2 18 20 | ectocl |  |-  ( z e. S -> z C_ ( 0 [,] 1 ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ z e. S ) -> z C_ ( 0 [,] 1 ) ) | 
						
							| 23 | 22 | sseld |  |-  ( ( ph /\ z e. S ) -> ( ( F ` z ) e. z -> ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 24 | 17 23 | embantd |  |-  ( ( ph /\ z e. S ) -> ( ( z =/= (/) -> ( F ` z ) e. z ) -> ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 25 | 24 | ralimdva |  |-  ( ph -> ( A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 26 | 4 25 | mpd |  |-  ( ph -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) | 
						
							| 27 |  | ffnfv |  |-  ( F : S --> ( 0 [,] 1 ) <-> ( F Fn S /\ A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 28 | 3 26 27 | sylanbrc |  |-  ( ph -> F : S --> ( 0 [,] 1 ) ) | 
						
							| 29 | 28 | frnd |  |-  ( ph -> ran F C_ ( 0 [,] 1 ) ) | 
						
							| 30 | 5 | adantr |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 31 |  | f1ocnv |  |-  ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) -1-1-onto-> NN ) | 
						
							| 32 |  | f1of |  |-  ( `' G : ( QQ i^i ( -u 1 [,] 1 ) ) -1-1-onto-> NN -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) --> NN ) | 
						
							| 33 | 30 31 32 | 3syl |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) --> NN ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) | 
						
							| 35 | 34 14 | sylib |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ =/= (/) ) | 
						
							| 36 |  | neeq1 |  |-  ( z = [ v ] .~ -> ( z =/= (/) <-> [ v ] .~ =/= (/) ) ) | 
						
							| 37 |  | fveq2 |  |-  ( z = [ v ] .~ -> ( F ` z ) = ( F ` [ v ] .~ ) ) | 
						
							| 38 |  | id |  |-  ( z = [ v ] .~ -> z = [ v ] .~ ) | 
						
							| 39 | 37 38 | eleq12d |  |-  ( z = [ v ] .~ -> ( ( F ` z ) e. z <-> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) | 
						
							| 40 | 36 39 | imbi12d |  |-  ( z = [ v ] .~ -> ( ( z =/= (/) -> ( F ` z ) e. z ) <-> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) ) | 
						
							| 41 | 4 | adantr |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 42 |  | ovex |  |-  ( 0 [,] 1 ) e. _V | 
						
							| 43 |  | erex |  |-  ( .~ Er ( 0 [,] 1 ) -> ( ( 0 [,] 1 ) e. _V -> .~ e. _V ) ) | 
						
							| 44 | 9 42 43 | mp2 |  |-  .~ e. _V | 
						
							| 45 | 44 | ecelqsi |  |-  ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) | 
						
							| 47 | 46 2 | eleqtrrdi |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. S ) | 
						
							| 48 | 40 41 47 | rspcdva |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) | 
						
							| 49 | 35 48 | mpd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) | 
						
							| 50 |  | fvex |  |-  ( F ` [ v ] .~ ) e. _V | 
						
							| 51 |  | vex |  |-  v e. _V | 
						
							| 52 | 50 51 | elec |  |-  ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> v .~ ( F ` [ v ] .~ ) ) | 
						
							| 53 |  | oveq12 |  |-  ( ( x = v /\ y = ( F ` [ v ] .~ ) ) -> ( x - y ) = ( v - ( F ` [ v ] .~ ) ) ) | 
						
							| 54 | 53 | eleq1d |  |-  ( ( x = v /\ y = ( F ` [ v ] .~ ) ) -> ( ( x - y ) e. QQ <-> ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) | 
						
							| 55 | 54 1 | brab2a |  |-  ( v .~ ( F ` [ v ] .~ ) <-> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) | 
						
							| 56 | 52 55 | bitri |  |-  ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) | 
						
							| 57 | 49 56 | sylib |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) | 
						
							| 58 | 57 | simprd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. QQ ) | 
						
							| 59 |  | elicc01 |  |-  ( v e. ( 0 [,] 1 ) <-> ( v e. RR /\ 0 <_ v /\ v <_ 1 ) ) | 
						
							| 60 | 34 59 | sylib |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v e. RR /\ 0 <_ v /\ v <_ 1 ) ) | 
						
							| 61 | 60 | simp1d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. RR ) | 
						
							| 62 | 57 | simpld |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) ) | 
						
							| 63 | 62 | simprd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) | 
						
							| 64 |  | elicc01 |  |-  ( ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) <-> ( ( F ` [ v ] .~ ) e. RR /\ 0 <_ ( F ` [ v ] .~ ) /\ ( F ` [ v ] .~ ) <_ 1 ) ) | 
						
							| 65 | 63 64 | sylib |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) e. RR /\ 0 <_ ( F ` [ v ] .~ ) /\ ( F ` [ v ] .~ ) <_ 1 ) ) | 
						
							| 66 | 65 | simp1d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. RR ) | 
						
							| 67 | 61 66 | resubcld |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. RR ) | 
						
							| 68 | 66 61 | resubcld |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) e. RR ) | 
						
							| 69 |  | 1red |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 1 e. RR ) | 
						
							| 70 | 60 | simp2d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 0 <_ v ) | 
						
							| 71 | 66 61 | subge02d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( 0 <_ v <-> ( ( F ` [ v ] .~ ) - v ) <_ ( F ` [ v ] .~ ) ) ) | 
						
							| 72 | 70 71 | mpbid |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) <_ ( F ` [ v ] .~ ) ) | 
						
							| 73 | 65 | simp3d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) <_ 1 ) | 
						
							| 74 | 68 66 69 72 73 | letrd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) <_ 1 ) | 
						
							| 75 | 68 69 | lenegd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( ( F ` [ v ] .~ ) - v ) <_ 1 <-> -u 1 <_ -u ( ( F ` [ v ] .~ ) - v ) ) ) | 
						
							| 76 | 74 75 | mpbid |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u 1 <_ -u ( ( F ` [ v ] .~ ) - v ) ) | 
						
							| 77 | 66 | recnd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. CC ) | 
						
							| 78 | 61 | recnd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. CC ) | 
						
							| 79 | 77 78 | negsubdi2d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u ( ( F ` [ v ] .~ ) - v ) = ( v - ( F ` [ v ] .~ ) ) ) | 
						
							| 80 | 76 79 | breqtrd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u 1 <_ ( v - ( F ` [ v ] .~ ) ) ) | 
						
							| 81 | 65 | simp2d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 0 <_ ( F ` [ v ] .~ ) ) | 
						
							| 82 | 61 66 | subge02d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( 0 <_ ( F ` [ v ] .~ ) <-> ( v - ( F ` [ v ] .~ ) ) <_ v ) ) | 
						
							| 83 | 81 82 | mpbid |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) <_ v ) | 
						
							| 84 | 60 | simp3d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v <_ 1 ) | 
						
							| 85 | 67 61 69 83 84 | letrd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) <_ 1 ) | 
						
							| 86 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 87 |  | 1re |  |-  1 e. RR | 
						
							| 88 | 86 87 | elicc2i |  |-  ( ( v - ( F ` [ v ] .~ ) ) e. ( -u 1 [,] 1 ) <-> ( ( v - ( F ` [ v ] .~ ) ) e. RR /\ -u 1 <_ ( v - ( F ` [ v ] .~ ) ) /\ ( v - ( F ` [ v ] .~ ) ) <_ 1 ) ) | 
						
							| 89 | 67 80 85 88 | syl3anbrc |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. ( -u 1 [,] 1 ) ) | 
						
							| 90 | 58 89 | elind |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 91 | 33 90 | ffvelcdmd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN ) | 
						
							| 92 |  | oveq1 |  |-  ( s = v -> ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) ) | 
						
							| 93 | 92 | eleq1d |  |-  ( s = v -> ( ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F <-> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) ) | 
						
							| 94 |  | f1ocnvfv2 |  |-  ( ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = ( v - ( F ` [ v ] .~ ) ) ) | 
						
							| 95 | 5 90 94 | syl2an2r |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = ( v - ( F ` [ v ] .~ ) ) ) | 
						
							| 96 | 95 | oveq2d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( v - ( v - ( F ` [ v ] .~ ) ) ) ) | 
						
							| 97 | 78 77 | nncand |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( v - ( F ` [ v ] .~ ) ) ) = ( F ` [ v ] .~ ) ) | 
						
							| 98 | 96 97 | eqtrd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( F ` [ v ] .~ ) ) | 
						
							| 99 |  | fnfvelrn |  |-  ( ( F Fn S /\ [ v ] .~ e. S ) -> ( F ` [ v ] .~ ) e. ran F ) | 
						
							| 100 | 3 47 99 | syl2an2r |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. ran F ) | 
						
							| 101 | 98 100 | eqeltrd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) | 
						
							| 102 | 93 61 101 | elrabd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) | 
						
							| 103 |  | fveq2 |  |-  ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( G ` n ) = ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( s - ( G ` n ) ) = ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) ) | 
						
							| 105 | 104 | eleq1d |  |-  ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) ) | 
						
							| 106 | 105 | rabbidv |  |-  ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) | 
						
							| 107 |  | reex |  |-  RR e. _V | 
						
							| 108 | 107 | rabex |  |-  { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } e. _V | 
						
							| 109 | 106 6 108 | fvmpt |  |-  ( ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN -> ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) | 
						
							| 110 | 91 109 | syl |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) | 
						
							| 111 | 102 110 | eleqtrrd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) | 
						
							| 112 |  | fveq2 |  |-  ( m = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( T ` m ) = ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) | 
						
							| 113 | 112 | eliuni |  |-  ( ( ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN /\ v e. ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) -> v e. U_ m e. NN ( T ` m ) ) | 
						
							| 114 | 91 111 113 | syl2anc |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. U_ m e. NN ( T ` m ) ) | 
						
							| 115 | 114 | ex |  |-  ( ph -> ( v e. ( 0 [,] 1 ) -> v e. U_ m e. NN ( T ` m ) ) ) | 
						
							| 116 | 115 | ssrdv |  |-  ( ph -> ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) ) | 
						
							| 117 |  | eliun |  |-  ( x e. U_ m e. NN ( T ` m ) <-> E. m e. NN x e. ( T ` m ) ) | 
						
							| 118 |  | fveq2 |  |-  ( n = m -> ( G ` n ) = ( G ` m ) ) | 
						
							| 119 | 118 | oveq2d |  |-  ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) | 
						
							| 120 | 119 | eleq1d |  |-  ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) | 
						
							| 121 | 120 | rabbidv |  |-  ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 122 | 107 | rabex |  |-  { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V | 
						
							| 123 | 121 6 122 | fvmpt |  |-  ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 124 | 123 | adantl |  |-  ( ( ph /\ m e. NN ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 125 | 124 | eleq2d |  |-  ( ( ph /\ m e. NN ) -> ( x e. ( T ` m ) <-> x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) | 
						
							| 126 | 125 | biimpa |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 127 |  | oveq1 |  |-  ( s = x -> ( s - ( G ` m ) ) = ( x - ( G ` m ) ) ) | 
						
							| 128 | 127 | eleq1d |  |-  ( s = x -> ( ( s - ( G ` m ) ) e. ran F <-> ( x - ( G ` m ) ) e. ran F ) ) | 
						
							| 129 | 128 | elrab |  |-  ( x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } <-> ( x e. RR /\ ( x - ( G ` m ) ) e. ran F ) ) | 
						
							| 130 | 126 129 | sylib |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x e. RR /\ ( x - ( G ` m ) ) e. ran F ) ) | 
						
							| 131 | 130 | simpld |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. RR ) | 
						
							| 132 | 86 | a1i |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 e. RR ) | 
						
							| 133 |  | iccssre |  |-  ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) | 
						
							| 134 | 86 87 133 | mp2an |  |-  ( -u 1 [,] 1 ) C_ RR | 
						
							| 135 |  | f1of |  |-  ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 136 | 5 135 | syl |  |-  ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 137 | 136 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 138 | 137 | elin2d |  |-  ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) | 
						
							| 139 | 134 138 | sselid |  |-  ( ( ph /\ m e. NN ) -> ( G ` m ) e. RR ) | 
						
							| 140 | 139 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) e. RR ) | 
						
							| 141 | 138 | adantr |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) | 
						
							| 142 | 86 87 | elicc2i |  |-  ( ( G ` m ) e. ( -u 1 [,] 1 ) <-> ( ( G ` m ) e. RR /\ -u 1 <_ ( G ` m ) /\ ( G ` m ) <_ 1 ) ) | 
						
							| 143 | 141 142 | sylib |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) e. RR /\ -u 1 <_ ( G ` m ) /\ ( G ` m ) <_ 1 ) ) | 
						
							| 144 | 143 | simp2d |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 <_ ( G ` m ) ) | 
						
							| 145 | 29 | ad2antrr |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ran F C_ ( 0 [,] 1 ) ) | 
						
							| 146 | 130 | simprd |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) e. ran F ) | 
						
							| 147 | 145 146 | sseldd |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) e. ( 0 [,] 1 ) ) | 
						
							| 148 |  | elicc01 |  |-  ( ( x - ( G ` m ) ) e. ( 0 [,] 1 ) <-> ( ( x - ( G ` m ) ) e. RR /\ 0 <_ ( x - ( G ` m ) ) /\ ( x - ( G ` m ) ) <_ 1 ) ) | 
						
							| 149 | 147 148 | sylib |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( x - ( G ` m ) ) e. RR /\ 0 <_ ( x - ( G ` m ) ) /\ ( x - ( G ` m ) ) <_ 1 ) ) | 
						
							| 150 | 149 | simp2d |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 0 <_ ( x - ( G ` m ) ) ) | 
						
							| 151 | 131 140 | subge0d |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( 0 <_ ( x - ( G ` m ) ) <-> ( G ` m ) <_ x ) ) | 
						
							| 152 | 150 151 | mpbid |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) <_ x ) | 
						
							| 153 | 132 140 131 144 152 | letrd |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 <_ x ) | 
						
							| 154 |  | peano2re |  |-  ( ( G ` m ) e. RR -> ( ( G ` m ) + 1 ) e. RR ) | 
						
							| 155 | 140 154 | syl |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) e. RR ) | 
						
							| 156 |  | 2re |  |-  2 e. RR | 
						
							| 157 | 156 | a1i |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 2 e. RR ) | 
						
							| 158 | 149 | simp3d |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) <_ 1 ) | 
						
							| 159 |  | 1red |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 1 e. RR ) | 
						
							| 160 | 131 140 159 | lesubadd2d |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( x - ( G ` m ) ) <_ 1 <-> x <_ ( ( G ` m ) + 1 ) ) ) | 
						
							| 161 | 158 160 | mpbid |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x <_ ( ( G ` m ) + 1 ) ) | 
						
							| 162 | 143 | simp3d |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) <_ 1 ) | 
						
							| 163 | 140 159 159 162 | leadd1dd |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) <_ ( 1 + 1 ) ) | 
						
							| 164 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 165 | 163 164 | breqtrrdi |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) <_ 2 ) | 
						
							| 166 | 131 155 157 161 165 | letrd |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x <_ 2 ) | 
						
							| 167 | 86 156 | elicc2i |  |-  ( x e. ( -u 1 [,] 2 ) <-> ( x e. RR /\ -u 1 <_ x /\ x <_ 2 ) ) | 
						
							| 168 | 131 153 166 167 | syl3anbrc |  |-  ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. ( -u 1 [,] 2 ) ) | 
						
							| 169 | 168 | rexlimdva2 |  |-  ( ph -> ( E. m e. NN x e. ( T ` m ) -> x e. ( -u 1 [,] 2 ) ) ) | 
						
							| 170 | 117 169 | biimtrid |  |-  ( ph -> ( x e. U_ m e. NN ( T ` m ) -> x e. ( -u 1 [,] 2 ) ) ) | 
						
							| 171 | 170 | ssrdv |  |-  ( ph -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) | 
						
							| 172 | 29 116 171 | 3jca |  |-  ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |