Step |
Hyp |
Ref |
Expression |
1 |
|
vitali.1 |
|- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
2 |
|
vitali.2 |
|- S = ( ( 0 [,] 1 ) /. .~ ) |
3 |
|
vitali.3 |
|- ( ph -> F Fn S ) |
4 |
|
vitali.4 |
|- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
5 |
|
vitali.5 |
|- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
6 |
|
vitali.6 |
|- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
7 |
|
vitali.7 |
|- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
8 |
|
simprlr |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. ( T ` m ) ) |
9 |
|
simprll |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> m e. NN ) |
10 |
|
fveq2 |
|- ( n = m -> ( G ` n ) = ( G ` m ) ) |
11 |
10
|
oveq2d |
|- ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) |
12 |
11
|
eleq1d |
|- ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) |
13 |
12
|
rabbidv |
|- ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
14 |
|
reex |
|- RR e. _V |
15 |
14
|
rabex |
|- { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V |
16 |
13 6 15
|
fvmpt |
|- ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
17 |
9 16
|
syl |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
18 |
8 17
|
eleqtrd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
19 |
|
oveq1 |
|- ( s = w -> ( s - ( G ` m ) ) = ( w - ( G ` m ) ) ) |
20 |
19
|
eleq1d |
|- ( s = w -> ( ( s - ( G ` m ) ) e. ran F <-> ( w - ( G ` m ) ) e. ran F ) ) |
21 |
20
|
elrab |
|- ( w e. { s e. RR | ( s - ( G ` m ) ) e. ran F } <-> ( w e. RR /\ ( w - ( G ` m ) ) e. ran F ) ) |
22 |
18 21
|
sylib |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w e. RR /\ ( w - ( G ` m ) ) e. ran F ) ) |
23 |
22
|
simpld |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. RR ) |
24 |
23
|
recnd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. CC ) |
25 |
|
f1of |
|- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
26 |
5 25
|
syl |
|- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
27 |
|
inss1 |
|- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
28 |
|
fss |
|- ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ ) -> G : NN --> QQ ) |
29 |
26 27 28
|
sylancl |
|- ( ph -> G : NN --> QQ ) |
30 |
29
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN --> QQ ) |
31 |
30 9
|
ffvelrnd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) e. QQ ) |
32 |
|
qcn |
|- ( ( G ` m ) e. QQ -> ( G ` m ) e. CC ) |
33 |
31 32
|
syl |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) e. CC ) |
34 |
|
simprrl |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> k e. NN ) |
35 |
30 34
|
ffvelrnd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` k ) e. QQ ) |
36 |
|
qcn |
|- ( ( G ` k ) e. QQ -> ( G ` k ) e. CC ) |
37 |
35 36
|
syl |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` k ) e. CC ) |
38 |
1
|
vitalilem1 |
|- .~ Er ( 0 [,] 1 ) |
39 |
38
|
a1i |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> .~ Er ( 0 [,] 1 ) ) |
40 |
1 2 3 4 5 6 7
|
vitalilem2 |
|- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
41 |
40
|
simp1d |
|- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
42 |
41
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ran F C_ ( 0 [,] 1 ) ) |
43 |
22
|
simprd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) e. ran F ) |
44 |
42 43
|
sseldd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) e. ( 0 [,] 1 ) ) |
45 |
|
simprrr |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. ( T ` k ) ) |
46 |
|
fveq2 |
|- ( n = k -> ( G ` n ) = ( G ` k ) ) |
47 |
46
|
oveq2d |
|- ( n = k -> ( s - ( G ` n ) ) = ( s - ( G ` k ) ) ) |
48 |
47
|
eleq1d |
|- ( n = k -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` k ) ) e. ran F ) ) |
49 |
48
|
rabbidv |
|- ( n = k -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
50 |
14
|
rabex |
|- { s e. RR | ( s - ( G ` k ) ) e. ran F } e. _V |
51 |
49 6 50
|
fvmpt |
|- ( k e. NN -> ( T ` k ) = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
52 |
34 51
|
syl |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( T ` k ) = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
53 |
45 52
|
eleqtrd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. { s e. RR | ( s - ( G ` k ) ) e. ran F } ) |
54 |
|
oveq1 |
|- ( s = w -> ( s - ( G ` k ) ) = ( w - ( G ` k ) ) ) |
55 |
54
|
eleq1d |
|- ( s = w -> ( ( s - ( G ` k ) ) e. ran F <-> ( w - ( G ` k ) ) e. ran F ) ) |
56 |
55
|
elrab |
|- ( w e. { s e. RR | ( s - ( G ` k ) ) e. ran F } <-> ( w e. RR /\ ( w - ( G ` k ) ) e. ran F ) ) |
57 |
53 56
|
sylib |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w e. RR /\ ( w - ( G ` k ) ) e. ran F ) ) |
58 |
57
|
simprd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` k ) ) e. ran F ) |
59 |
42 58
|
sseldd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` k ) ) e. ( 0 [,] 1 ) ) |
60 |
24 33 37
|
nnncan1d |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) = ( ( G ` k ) - ( G ` m ) ) ) |
61 |
|
qsubcl |
|- ( ( ( G ` k ) e. QQ /\ ( G ` m ) e. QQ ) -> ( ( G ` k ) - ( G ` m ) ) e. QQ ) |
62 |
35 31 61
|
syl2anc |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( G ` k ) - ( G ` m ) ) e. QQ ) |
63 |
60 62
|
eqeltrd |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) |
64 |
|
oveq12 |
|- ( ( x = ( w - ( G ` m ) ) /\ y = ( w - ( G ` k ) ) ) -> ( x - y ) = ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) ) |
65 |
64
|
eleq1d |
|- ( ( x = ( w - ( G ` m ) ) /\ y = ( w - ( G ` k ) ) ) -> ( ( x - y ) e. QQ <-> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) ) |
66 |
65 1
|
brab2a |
|- ( ( w - ( G ` m ) ) .~ ( w - ( G ` k ) ) <-> ( ( ( w - ( G ` m ) ) e. ( 0 [,] 1 ) /\ ( w - ( G ` k ) ) e. ( 0 [,] 1 ) ) /\ ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) ) |
67 |
44 59 63 66
|
syl21anbrc |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) .~ ( w - ( G ` k ) ) ) |
68 |
39 67
|
erthi |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> [ ( w - ( G ` m ) ) ] .~ = [ ( w - ( G ` k ) ) ] .~ ) |
69 |
68
|
fveq2d |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( F ` [ ( w - ( G ` k ) ) ] .~ ) ) |
70 |
|
eceq1 |
|- ( z = ( w - ( G ` m ) ) -> [ z ] .~ = [ ( w - ( G ` m ) ) ] .~ ) |
71 |
70
|
fveq2d |
|- ( z = ( w - ( G ` m ) ) -> ( F ` [ z ] .~ ) = ( F ` [ ( w - ( G ` m ) ) ] .~ ) ) |
72 |
|
id |
|- ( z = ( w - ( G ` m ) ) -> z = ( w - ( G ` m ) ) ) |
73 |
71 72
|
eqeq12d |
|- ( z = ( w - ( G ` m ) ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( w - ( G ` m ) ) ) ) |
74 |
|
fveq2 |
|- ( [ v ] .~ = w -> ( F ` [ v ] .~ ) = ( F ` w ) ) |
75 |
74
|
eceq1d |
|- ( [ v ] .~ = w -> [ ( F ` [ v ] .~ ) ] .~ = [ ( F ` w ) ] .~ ) |
76 |
75
|
fveq2d |
|- ( [ v ] .~ = w -> ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ ( F ` w ) ] .~ ) ) |
77 |
76 74
|
eqeq12d |
|- ( [ v ] .~ = w -> ( ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ v ] .~ ) <-> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
78 |
38
|
a1i |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> .~ Er ( 0 [,] 1 ) ) |
79 |
|
simpr |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) |
80 |
|
erdm |
|- ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) |
81 |
38 80
|
ax-mp |
|- dom .~ = ( 0 [,] 1 ) |
82 |
81
|
eleq2i |
|- ( v e. dom .~ <-> v e. ( 0 [,] 1 ) ) |
83 |
|
ecdmn0 |
|- ( v e. dom .~ <-> [ v ] .~ =/= (/) ) |
84 |
82 83
|
bitr3i |
|- ( v e. ( 0 [,] 1 ) <-> [ v ] .~ =/= (/) ) |
85 |
79 84
|
sylib |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ =/= (/) ) |
86 |
|
neeq1 |
|- ( z = [ v ] .~ -> ( z =/= (/) <-> [ v ] .~ =/= (/) ) ) |
87 |
|
fveq2 |
|- ( z = [ v ] .~ -> ( F ` z ) = ( F ` [ v ] .~ ) ) |
88 |
|
id |
|- ( z = [ v ] .~ -> z = [ v ] .~ ) |
89 |
87 88
|
eleq12d |
|- ( z = [ v ] .~ -> ( ( F ` z ) e. z <-> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
90 |
86 89
|
imbi12d |
|- ( z = [ v ] .~ -> ( ( z =/= (/) -> ( F ` z ) e. z ) <-> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) ) |
91 |
4
|
adantr |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
92 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
93 |
|
erex |
|- ( .~ Er ( 0 [,] 1 ) -> ( ( 0 [,] 1 ) e. _V -> .~ e. _V ) ) |
94 |
38 92 93
|
mp2 |
|- .~ e. _V |
95 |
94
|
ecelqsi |
|- ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) |
96 |
95 2
|
eleqtrrdi |
|- ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. S ) |
97 |
96
|
adantl |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. S ) |
98 |
90 91 97
|
rspcdva |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
99 |
85 98
|
mpd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) |
100 |
|
fvex |
|- ( F ` [ v ] .~ ) e. _V |
101 |
|
vex |
|- v e. _V |
102 |
100 101
|
elec |
|- ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> v .~ ( F ` [ v ] .~ ) ) |
103 |
99 102
|
sylib |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v .~ ( F ` [ v ] .~ ) ) |
104 |
78 103
|
erthi |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ = [ ( F ` [ v ] .~ ) ] .~ ) |
105 |
104
|
eqcomd |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ ( F ` [ v ] .~ ) ] .~ = [ v ] .~ ) |
106 |
105
|
fveq2d |
|- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ v ] .~ ) ) |
107 |
2 77 106
|
ectocld |
|- ( ( ph /\ w e. S ) -> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) |
108 |
107
|
ralrimiva |
|- ( ph -> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) |
109 |
|
eceq1 |
|- ( z = ( F ` w ) -> [ z ] .~ = [ ( F ` w ) ] .~ ) |
110 |
109
|
fveq2d |
|- ( z = ( F ` w ) -> ( F ` [ z ] .~ ) = ( F ` [ ( F ` w ) ] .~ ) ) |
111 |
|
id |
|- ( z = ( F ` w ) -> z = ( F ` w ) ) |
112 |
110 111
|
eqeq12d |
|- ( z = ( F ` w ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
113 |
112
|
ralrn |
|- ( F Fn S -> ( A. z e. ran F ( F ` [ z ] .~ ) = z <-> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
114 |
3 113
|
syl |
|- ( ph -> ( A. z e. ran F ( F ` [ z ] .~ ) = z <-> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) |
115 |
108 114
|
mpbird |
|- ( ph -> A. z e. ran F ( F ` [ z ] .~ ) = z ) |
116 |
115
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> A. z e. ran F ( F ` [ z ] .~ ) = z ) |
117 |
73 116 43
|
rspcdva |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( w - ( G ` m ) ) ) |
118 |
|
eceq1 |
|- ( z = ( w - ( G ` k ) ) -> [ z ] .~ = [ ( w - ( G ` k ) ) ] .~ ) |
119 |
118
|
fveq2d |
|- ( z = ( w - ( G ` k ) ) -> ( F ` [ z ] .~ ) = ( F ` [ ( w - ( G ` k ) ) ] .~ ) ) |
120 |
|
id |
|- ( z = ( w - ( G ` k ) ) -> z = ( w - ( G ` k ) ) ) |
121 |
119 120
|
eqeq12d |
|- ( z = ( w - ( G ` k ) ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( w - ( G ` k ) ) ] .~ ) = ( w - ( G ` k ) ) ) ) |
122 |
121 116 58
|
rspcdva |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` k ) ) ] .~ ) = ( w - ( G ` k ) ) ) |
123 |
69 117 122
|
3eqtr3d |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) = ( w - ( G ` k ) ) ) |
124 |
24 33 37 123
|
subcand |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) = ( G ` k ) ) |
125 |
5
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
126 |
|
f1of1 |
|- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
127 |
125 126
|
syl |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
128 |
|
f1fveq |
|- ( ( G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( m e. NN /\ k e. NN ) ) -> ( ( G ` m ) = ( G ` k ) <-> m = k ) ) |
129 |
127 9 34 128
|
syl12anc |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( G ` m ) = ( G ` k ) <-> m = k ) ) |
130 |
124 129
|
mpbid |
|- ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> m = k ) |
131 |
130
|
ex |
|- ( ph -> ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) |
132 |
131
|
alrimivv |
|- ( ph -> A. m A. k ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) |
133 |
|
eleq1w |
|- ( m = k -> ( m e. NN <-> k e. NN ) ) |
134 |
|
fveq2 |
|- ( m = k -> ( T ` m ) = ( T ` k ) ) |
135 |
134
|
eleq2d |
|- ( m = k -> ( w e. ( T ` m ) <-> w e. ( T ` k ) ) ) |
136 |
133 135
|
anbi12d |
|- ( m = k -> ( ( m e. NN /\ w e. ( T ` m ) ) <-> ( k e. NN /\ w e. ( T ` k ) ) ) ) |
137 |
136
|
mo4 |
|- ( E* m ( m e. NN /\ w e. ( T ` m ) ) <-> A. m A. k ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) |
138 |
132 137
|
sylibr |
|- ( ph -> E* m ( m e. NN /\ w e. ( T ` m ) ) ) |
139 |
138
|
alrimiv |
|- ( ph -> A. w E* m ( m e. NN /\ w e. ( T ` m ) ) ) |
140 |
|
dfdisj2 |
|- ( Disj_ m e. NN ( T ` m ) <-> A. w E* m ( m e. NN /\ w e. ( T ` m ) ) ) |
141 |
139 140
|
sylibr |
|- ( ph -> Disj_ m e. NN ( T ` m ) ) |