| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vitali.1 |  |-  .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } | 
						
							| 2 |  | vitali.2 |  |-  S = ( ( 0 [,] 1 ) /. .~ ) | 
						
							| 3 |  | vitali.3 |  |-  ( ph -> F Fn S ) | 
						
							| 4 |  | vitali.4 |  |-  ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 5 |  | vitali.5 |  |-  ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 6 |  | vitali.6 |  |-  T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) | 
						
							| 7 |  | vitali.7 |  |-  ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) | 
						
							| 8 |  | simprlr |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. ( T ` m ) ) | 
						
							| 9 |  | simprll |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> m e. NN ) | 
						
							| 10 |  | fveq2 |  |-  ( n = m -> ( G ` n ) = ( G ` m ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) | 
						
							| 13 | 12 | rabbidv |  |-  ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 14 |  | reex |  |-  RR e. _V | 
						
							| 15 | 14 | rabex |  |-  { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V | 
						
							| 16 | 13 6 15 | fvmpt |  |-  ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 17 | 9 16 | syl |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 18 | 8 17 | eleqtrd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) | 
						
							| 19 |  | oveq1 |  |-  ( s = w -> ( s - ( G ` m ) ) = ( w - ( G ` m ) ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( s = w -> ( ( s - ( G ` m ) ) e. ran F <-> ( w - ( G ` m ) ) e. ran F ) ) | 
						
							| 21 | 20 | elrab |  |-  ( w e. { s e. RR | ( s - ( G ` m ) ) e. ran F } <-> ( w e. RR /\ ( w - ( G ` m ) ) e. ran F ) ) | 
						
							| 22 | 18 21 | sylib |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w e. RR /\ ( w - ( G ` m ) ) e. ran F ) ) | 
						
							| 23 | 22 | simpld |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. RR ) | 
						
							| 24 | 23 | recnd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. CC ) | 
						
							| 25 |  | f1of |  |-  ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 26 | 5 25 | syl |  |-  ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 27 |  | inss1 |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ | 
						
							| 28 |  | fss |  |-  ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ ) -> G : NN --> QQ ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ph -> G : NN --> QQ ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN --> QQ ) | 
						
							| 31 | 30 9 | ffvelcdmd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) e. QQ ) | 
						
							| 32 |  | qcn |  |-  ( ( G ` m ) e. QQ -> ( G ` m ) e. CC ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) e. CC ) | 
						
							| 34 |  | simprrl |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> k e. NN ) | 
						
							| 35 | 30 34 | ffvelcdmd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` k ) e. QQ ) | 
						
							| 36 |  | qcn |  |-  ( ( G ` k ) e. QQ -> ( G ` k ) e. CC ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` k ) e. CC ) | 
						
							| 38 | 1 | vitalilem1 |  |-  .~ Er ( 0 [,] 1 ) | 
						
							| 39 | 38 | a1i |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> .~ Er ( 0 [,] 1 ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 | vitalilem2 |  |-  ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) | 
						
							| 41 | 40 | simp1d |  |-  ( ph -> ran F C_ ( 0 [,] 1 ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ran F C_ ( 0 [,] 1 ) ) | 
						
							| 43 | 22 | simprd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) e. ran F ) | 
						
							| 44 | 42 43 | sseldd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) e. ( 0 [,] 1 ) ) | 
						
							| 45 |  | simprrr |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. ( T ` k ) ) | 
						
							| 46 |  | fveq2 |  |-  ( n = k -> ( G ` n ) = ( G ` k ) ) | 
						
							| 47 | 46 | oveq2d |  |-  ( n = k -> ( s - ( G ` n ) ) = ( s - ( G ` k ) ) ) | 
						
							| 48 | 47 | eleq1d |  |-  ( n = k -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` k ) ) e. ran F ) ) | 
						
							| 49 | 48 | rabbidv |  |-  ( n = k -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) | 
						
							| 50 | 14 | rabex |  |-  { s e. RR | ( s - ( G ` k ) ) e. ran F } e. _V | 
						
							| 51 | 49 6 50 | fvmpt |  |-  ( k e. NN -> ( T ` k ) = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) | 
						
							| 52 | 34 51 | syl |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( T ` k ) = { s e. RR | ( s - ( G ` k ) ) e. ran F } ) | 
						
							| 53 | 45 52 | eleqtrd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> w e. { s e. RR | ( s - ( G ` k ) ) e. ran F } ) | 
						
							| 54 |  | oveq1 |  |-  ( s = w -> ( s - ( G ` k ) ) = ( w - ( G ` k ) ) ) | 
						
							| 55 | 54 | eleq1d |  |-  ( s = w -> ( ( s - ( G ` k ) ) e. ran F <-> ( w - ( G ` k ) ) e. ran F ) ) | 
						
							| 56 | 55 | elrab |  |-  ( w e. { s e. RR | ( s - ( G ` k ) ) e. ran F } <-> ( w e. RR /\ ( w - ( G ` k ) ) e. ran F ) ) | 
						
							| 57 | 53 56 | sylib |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w e. RR /\ ( w - ( G ` k ) ) e. ran F ) ) | 
						
							| 58 | 57 | simprd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` k ) ) e. ran F ) | 
						
							| 59 | 42 58 | sseldd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` k ) ) e. ( 0 [,] 1 ) ) | 
						
							| 60 | 24 33 37 | nnncan1d |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) = ( ( G ` k ) - ( G ` m ) ) ) | 
						
							| 61 |  | qsubcl |  |-  ( ( ( G ` k ) e. QQ /\ ( G ` m ) e. QQ ) -> ( ( G ` k ) - ( G ` m ) ) e. QQ ) | 
						
							| 62 | 35 31 61 | syl2anc |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( G ` k ) - ( G ` m ) ) e. QQ ) | 
						
							| 63 | 60 62 | eqeltrd |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) | 
						
							| 64 |  | oveq12 |  |-  ( ( x = ( w - ( G ` m ) ) /\ y = ( w - ( G ` k ) ) ) -> ( x - y ) = ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) ) | 
						
							| 65 | 64 | eleq1d |  |-  ( ( x = ( w - ( G ` m ) ) /\ y = ( w - ( G ` k ) ) ) -> ( ( x - y ) e. QQ <-> ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) ) | 
						
							| 66 | 65 1 | brab2a |  |-  ( ( w - ( G ` m ) ) .~ ( w - ( G ` k ) ) <-> ( ( ( w - ( G ` m ) ) e. ( 0 [,] 1 ) /\ ( w - ( G ` k ) ) e. ( 0 [,] 1 ) ) /\ ( ( w - ( G ` m ) ) - ( w - ( G ` k ) ) ) e. QQ ) ) | 
						
							| 67 | 44 59 63 66 | syl21anbrc |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) .~ ( w - ( G ` k ) ) ) | 
						
							| 68 | 39 67 | erthi |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> [ ( w - ( G ` m ) ) ] .~ = [ ( w - ( G ` k ) ) ] .~ ) | 
						
							| 69 | 68 | fveq2d |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( F ` [ ( w - ( G ` k ) ) ] .~ ) ) | 
						
							| 70 |  | eceq1 |  |-  ( z = ( w - ( G ` m ) ) -> [ z ] .~ = [ ( w - ( G ` m ) ) ] .~ ) | 
						
							| 71 | 70 | fveq2d |  |-  ( z = ( w - ( G ` m ) ) -> ( F ` [ z ] .~ ) = ( F ` [ ( w - ( G ` m ) ) ] .~ ) ) | 
						
							| 72 |  | id |  |-  ( z = ( w - ( G ` m ) ) -> z = ( w - ( G ` m ) ) ) | 
						
							| 73 | 71 72 | eqeq12d |  |-  ( z = ( w - ( G ` m ) ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( w - ( G ` m ) ) ) ) | 
						
							| 74 |  | fveq2 |  |-  ( [ v ] .~ = w -> ( F ` [ v ] .~ ) = ( F ` w ) ) | 
						
							| 75 | 74 | eceq1d |  |-  ( [ v ] .~ = w -> [ ( F ` [ v ] .~ ) ] .~ = [ ( F ` w ) ] .~ ) | 
						
							| 76 | 75 | fveq2d |  |-  ( [ v ] .~ = w -> ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ ( F ` w ) ] .~ ) ) | 
						
							| 77 | 76 74 | eqeq12d |  |-  ( [ v ] .~ = w -> ( ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ v ] .~ ) <-> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) | 
						
							| 78 | 38 | a1i |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> .~ Er ( 0 [,] 1 ) ) | 
						
							| 79 |  | simpr |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) | 
						
							| 80 |  | erdm |  |-  ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) | 
						
							| 81 | 38 80 | ax-mp |  |-  dom .~ = ( 0 [,] 1 ) | 
						
							| 82 | 81 | eleq2i |  |-  ( v e. dom .~ <-> v e. ( 0 [,] 1 ) ) | 
						
							| 83 |  | ecdmn0 |  |-  ( v e. dom .~ <-> [ v ] .~ =/= (/) ) | 
						
							| 84 | 82 83 | bitr3i |  |-  ( v e. ( 0 [,] 1 ) <-> [ v ] .~ =/= (/) ) | 
						
							| 85 | 79 84 | sylib |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ =/= (/) ) | 
						
							| 86 |  | neeq1 |  |-  ( z = [ v ] .~ -> ( z =/= (/) <-> [ v ] .~ =/= (/) ) ) | 
						
							| 87 |  | fveq2 |  |-  ( z = [ v ] .~ -> ( F ` z ) = ( F ` [ v ] .~ ) ) | 
						
							| 88 |  | id |  |-  ( z = [ v ] .~ -> z = [ v ] .~ ) | 
						
							| 89 | 87 88 | eleq12d |  |-  ( z = [ v ] .~ -> ( ( F ` z ) e. z <-> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) | 
						
							| 90 | 86 89 | imbi12d |  |-  ( z = [ v ] .~ -> ( ( z =/= (/) -> ( F ` z ) e. z ) <-> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) ) | 
						
							| 91 | 4 | adantr |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 92 |  | ovex |  |-  ( 0 [,] 1 ) e. _V | 
						
							| 93 |  | erex |  |-  ( .~ Er ( 0 [,] 1 ) -> ( ( 0 [,] 1 ) e. _V -> .~ e. _V ) ) | 
						
							| 94 | 38 92 93 | mp2 |  |-  .~ e. _V | 
						
							| 95 | 94 | ecelqsi |  |-  ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) | 
						
							| 96 | 95 2 | eleqtrrdi |  |-  ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. S ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. S ) | 
						
							| 98 | 90 91 97 | rspcdva |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) | 
						
							| 99 | 85 98 | mpd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) | 
						
							| 100 |  | fvex |  |-  ( F ` [ v ] .~ ) e. _V | 
						
							| 101 |  | vex |  |-  v e. _V | 
						
							| 102 | 100 101 | elec |  |-  ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> v .~ ( F ` [ v ] .~ ) ) | 
						
							| 103 | 99 102 | sylib |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v .~ ( F ` [ v ] .~ ) ) | 
						
							| 104 | 78 103 | erthi |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ = [ ( F ` [ v ] .~ ) ] .~ ) | 
						
							| 105 | 104 | eqcomd |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ ( F ` [ v ] .~ ) ] .~ = [ v ] .~ ) | 
						
							| 106 | 105 | fveq2d |  |-  ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ ( F ` [ v ] .~ ) ] .~ ) = ( F ` [ v ] .~ ) ) | 
						
							| 107 | 2 77 106 | ectocld |  |-  ( ( ph /\ w e. S ) -> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) | 
						
							| 108 | 107 | ralrimiva |  |-  ( ph -> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) | 
						
							| 109 |  | eceq1 |  |-  ( z = ( F ` w ) -> [ z ] .~ = [ ( F ` w ) ] .~ ) | 
						
							| 110 | 109 | fveq2d |  |-  ( z = ( F ` w ) -> ( F ` [ z ] .~ ) = ( F ` [ ( F ` w ) ] .~ ) ) | 
						
							| 111 |  | id |  |-  ( z = ( F ` w ) -> z = ( F ` w ) ) | 
						
							| 112 | 110 111 | eqeq12d |  |-  ( z = ( F ` w ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) | 
						
							| 113 | 112 | ralrn |  |-  ( F Fn S -> ( A. z e. ran F ( F ` [ z ] .~ ) = z <-> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) | 
						
							| 114 | 3 113 | syl |  |-  ( ph -> ( A. z e. ran F ( F ` [ z ] .~ ) = z <-> A. w e. S ( F ` [ ( F ` w ) ] .~ ) = ( F ` w ) ) ) | 
						
							| 115 | 108 114 | mpbird |  |-  ( ph -> A. z e. ran F ( F ` [ z ] .~ ) = z ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> A. z e. ran F ( F ` [ z ] .~ ) = z ) | 
						
							| 117 | 73 116 43 | rspcdva |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` m ) ) ] .~ ) = ( w - ( G ` m ) ) ) | 
						
							| 118 |  | eceq1 |  |-  ( z = ( w - ( G ` k ) ) -> [ z ] .~ = [ ( w - ( G ` k ) ) ] .~ ) | 
						
							| 119 | 118 | fveq2d |  |-  ( z = ( w - ( G ` k ) ) -> ( F ` [ z ] .~ ) = ( F ` [ ( w - ( G ` k ) ) ] .~ ) ) | 
						
							| 120 |  | id |  |-  ( z = ( w - ( G ` k ) ) -> z = ( w - ( G ` k ) ) ) | 
						
							| 121 | 119 120 | eqeq12d |  |-  ( z = ( w - ( G ` k ) ) -> ( ( F ` [ z ] .~ ) = z <-> ( F ` [ ( w - ( G ` k ) ) ] .~ ) = ( w - ( G ` k ) ) ) ) | 
						
							| 122 | 121 116 58 | rspcdva |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( F ` [ ( w - ( G ` k ) ) ] .~ ) = ( w - ( G ` k ) ) ) | 
						
							| 123 | 69 117 122 | 3eqtr3d |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( w - ( G ` m ) ) = ( w - ( G ` k ) ) ) | 
						
							| 124 | 24 33 37 123 | subcand |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( G ` m ) = ( G ` k ) ) | 
						
							| 125 | 5 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 126 |  | f1of1 |  |-  ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 127 | 125 126 | syl |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 128 |  | f1fveq |  |-  ( ( G : NN -1-1-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( m e. NN /\ k e. NN ) ) -> ( ( G ` m ) = ( G ` k ) <-> m = k ) ) | 
						
							| 129 | 127 9 34 128 | syl12anc |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> ( ( G ` m ) = ( G ` k ) <-> m = k ) ) | 
						
							| 130 | 124 129 | mpbid |  |-  ( ( ph /\ ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) ) -> m = k ) | 
						
							| 131 | 130 | ex |  |-  ( ph -> ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) | 
						
							| 132 | 131 | alrimivv |  |-  ( ph -> A. m A. k ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) | 
						
							| 133 |  | eleq1w |  |-  ( m = k -> ( m e. NN <-> k e. NN ) ) | 
						
							| 134 |  | fveq2 |  |-  ( m = k -> ( T ` m ) = ( T ` k ) ) | 
						
							| 135 | 134 | eleq2d |  |-  ( m = k -> ( w e. ( T ` m ) <-> w e. ( T ` k ) ) ) | 
						
							| 136 | 133 135 | anbi12d |  |-  ( m = k -> ( ( m e. NN /\ w e. ( T ` m ) ) <-> ( k e. NN /\ w e. ( T ` k ) ) ) ) | 
						
							| 137 | 136 | mo4 |  |-  ( E* m ( m e. NN /\ w e. ( T ` m ) ) <-> A. m A. k ( ( ( m e. NN /\ w e. ( T ` m ) ) /\ ( k e. NN /\ w e. ( T ` k ) ) ) -> m = k ) ) | 
						
							| 138 | 132 137 | sylibr |  |-  ( ph -> E* m ( m e. NN /\ w e. ( T ` m ) ) ) | 
						
							| 139 | 138 | alrimiv |  |-  ( ph -> A. w E* m ( m e. NN /\ w e. ( T ` m ) ) ) | 
						
							| 140 |  | dfdisj2 |  |-  ( Disj_ m e. NN ( T ` m ) <-> A. w E* m ( m e. NN /\ w e. ( T ` m ) ) ) | 
						
							| 141 | 139 140 | sylibr |  |-  ( ph -> Disj_ m e. NN ( T ` m ) ) |