| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vitali.1 |
|- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
| 2 |
|
vitali.2 |
|- S = ( ( 0 [,] 1 ) /. .~ ) |
| 3 |
|
vitali.3 |
|- ( ph -> F Fn S ) |
| 4 |
|
vitali.4 |
|- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
| 5 |
|
vitali.5 |
|- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 6 |
|
vitali.6 |
|- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
| 7 |
|
vitali.7 |
|- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
| 8 |
|
fveq2 |
|- ( n = m -> ( G ` n ) = ( G ` m ) ) |
| 9 |
8
|
oveq2d |
|- ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) |
| 10 |
9
|
eleq1d |
|- ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) |
| 11 |
10
|
rabbidv |
|- ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
12
|
rabex |
|- { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V |
| 14 |
11 6 13
|
fvmpt |
|- ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ m e. NN ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 16 |
15
|
fveq2d |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = ( vol* ` { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) |
| 17 |
1 2 3 4 5 6 7
|
vitalilem2 |
|- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
| 18 |
17
|
simp1d |
|- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
| 19 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 20 |
18 19
|
sstrdi |
|- ( ph -> ran F C_ RR ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ m e. NN ) -> ran F C_ RR ) |
| 22 |
|
neg1rr |
|- -u 1 e. RR |
| 23 |
|
1re |
|- 1 e. RR |
| 24 |
|
iccssre |
|- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
| 25 |
22 23 24
|
mp2an |
|- ( -u 1 [,] 1 ) C_ RR |
| 26 |
|
f1of |
|- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 27 |
5 26
|
syl |
|- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 28 |
27
|
ffvelcdmda |
|- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 29 |
28
|
elin2d |
|- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) |
| 30 |
25 29
|
sselid |
|- ( ( ph /\ m e. NN ) -> ( G ` m ) e. RR ) |
| 31 |
|
eqidd |
|- ( ( ph /\ m e. NN ) -> { s e. RR | ( s - ( G ` m ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 32 |
21 30 31
|
ovolshft |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ran F ) = ( vol* ` { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) |
| 33 |
16 32
|
eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = ( vol* ` ran F ) ) |
| 34 |
|
3re |
|- 3 e. RR |
| 35 |
34
|
rexri |
|- 3 e. RR* |
| 36 |
35
|
a1i |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 e. RR* ) |
| 37 |
|
3rp |
|- 3 e. RR+ |
| 38 |
|
0re |
|- 0 e. RR |
| 39 |
|
0le1 |
|- 0 <_ 1 |
| 40 |
|
ovolicc |
|- ( ( 0 e. RR /\ 1 e. RR /\ 0 <_ 1 ) -> ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) ) |
| 41 |
38 23 39 40
|
mp3an |
|- ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) |
| 42 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 43 |
41 42
|
eqtri |
|- ( vol* ` ( 0 [,] 1 ) ) = 1 |
| 44 |
43 23
|
eqeltri |
|- ( vol* ` ( 0 [,] 1 ) ) e. RR |
| 45 |
|
ovolsscl |
|- ( ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ RR /\ ( vol* ` ( 0 [,] 1 ) ) e. RR ) -> ( vol* ` ran F ) e. RR ) |
| 46 |
19 44 45
|
mp3an23 |
|- ( ran F C_ ( 0 [,] 1 ) -> ( vol* ` ran F ) e. RR ) |
| 47 |
18 46
|
syl |
|- ( ph -> ( vol* ` ran F ) e. RR ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` ran F ) e. RR ) |
| 49 |
|
simpr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 0 < ( vol* ` ran F ) ) |
| 50 |
48 49
|
elrpd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` ran F ) e. RR+ ) |
| 51 |
|
rpdivcl |
|- ( ( 3 e. RR+ /\ ( vol* ` ran F ) e. RR+ ) -> ( 3 / ( vol* ` ran F ) ) e. RR+ ) |
| 52 |
37 50 51
|
sylancr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( 3 / ( vol* ` ran F ) ) e. RR+ ) |
| 53 |
52
|
rpred |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( 3 / ( vol* ` ran F ) ) e. RR ) |
| 54 |
52
|
rpge0d |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 0 <_ ( 3 / ( vol* ` ran F ) ) ) |
| 55 |
|
flge0nn0 |
|- ( ( ( 3 / ( vol* ` ran F ) ) e. RR /\ 0 <_ ( 3 / ( vol* ` ran F ) ) ) -> ( |_ ` ( 3 / ( vol* ` ran F ) ) ) e. NN0 ) |
| 56 |
53 54 55
|
syl2anc |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( |_ ` ( 3 / ( vol* ` ran F ) ) ) e. NN0 ) |
| 57 |
|
nn0p1nn |
|- ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) e. NN0 -> ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) |
| 58 |
56 57
|
syl |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) |
| 59 |
58
|
nnred |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. RR ) |
| 60 |
59 48
|
remulcld |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. RR ) |
| 61 |
60
|
rexrd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. RR* ) |
| 62 |
12
|
elpw2 |
|- ( ran F e. ~P RR <-> ran F C_ RR ) |
| 63 |
20 62
|
sylibr |
|- ( ph -> ran F e. ~P RR ) |
| 64 |
63
|
anim1i |
|- ( ( ph /\ -. ran F e. dom vol ) -> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
| 65 |
|
eldif |
|- ( ran F e. ( ~P RR \ dom vol ) <-> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
| 66 |
64 65
|
sylibr |
|- ( ( ph /\ -. ran F e. dom vol ) -> ran F e. ( ~P RR \ dom vol ) ) |
| 67 |
66
|
ex |
|- ( ph -> ( -. ran F e. dom vol -> ran F e. ( ~P RR \ dom vol ) ) ) |
| 68 |
7 67
|
mt3d |
|- ( ph -> ran F e. dom vol ) |
| 69 |
|
inss1 |
|- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
| 70 |
|
qssre |
|- QQ C_ RR |
| 71 |
69 70
|
sstri |
|- ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR |
| 72 |
|
fss |
|- ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR ) -> G : NN --> RR ) |
| 73 |
27 71 72
|
sylancl |
|- ( ph -> G : NN --> RR ) |
| 74 |
73
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 75 |
|
shftmbl |
|- ( ( ran F e. dom vol /\ ( G ` n ) e. RR ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
| 76 |
68 74 75
|
syl2an2r |
|- ( ( ph /\ n e. NN ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
| 77 |
76 6
|
fmptd |
|- ( ph -> T : NN --> dom vol ) |
| 78 |
77
|
ffvelcdmda |
|- ( ( ph /\ m e. NN ) -> ( T ` m ) e. dom vol ) |
| 79 |
78
|
ralrimiva |
|- ( ph -> A. m e. NN ( T ` m ) e. dom vol ) |
| 80 |
|
iunmbl |
|- ( A. m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) e. dom vol ) |
| 81 |
79 80
|
syl |
|- ( ph -> U_ m e. NN ( T ` m ) e. dom vol ) |
| 82 |
|
mblss |
|- ( U_ m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) C_ RR ) |
| 83 |
|
ovolcl |
|- ( U_ m e. NN ( T ` m ) C_ RR -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
| 84 |
81 82 83
|
3syl |
|- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
| 86 |
|
flltp1 |
|- ( ( 3 / ( vol* ` ran F ) ) e. RR -> ( 3 / ( vol* ` ran F ) ) < ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) |
| 87 |
53 86
|
syl |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( 3 / ( vol* ` ran F ) ) < ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) |
| 88 |
34
|
a1i |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 e. RR ) |
| 89 |
88 59 50
|
ltdivmul2d |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( 3 / ( vol* ` ran F ) ) < ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) <-> 3 < ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) ) |
| 90 |
87 89
|
mpbid |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 < ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 91 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 92 |
|
1zzd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 1 e. ZZ ) |
| 93 |
|
mblvol |
|- ( ( T ` m ) e. dom vol -> ( vol ` ( T ` m ) ) = ( vol* ` ( T ` m ) ) ) |
| 94 |
78 93
|
syl |
|- ( ( ph /\ m e. NN ) -> ( vol ` ( T ` m ) ) = ( vol* ` ( T ` m ) ) ) |
| 95 |
94 33
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( vol ` ( T ` m ) ) = ( vol* ` ran F ) ) |
| 96 |
47
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ran F ) e. RR ) |
| 97 |
95 96
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( vol ` ( T ` m ) ) e. RR ) |
| 98 |
97
|
adantlr |
|- ( ( ( ph /\ 0 < ( vol* ` ran F ) ) /\ m e. NN ) -> ( vol ` ( T ` m ) ) e. RR ) |
| 99 |
|
eqid |
|- ( m e. NN |-> ( vol ` ( T ` m ) ) ) = ( m e. NN |-> ( vol ` ( T ` m ) ) ) |
| 100 |
98 99
|
fmptd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( m e. NN |-> ( vol ` ( T ` m ) ) ) : NN --> RR ) |
| 101 |
100
|
ffvelcdmda |
|- ( ( ( ph /\ 0 < ( vol* ` ran F ) ) /\ k e. NN ) -> ( ( m e. NN |-> ( vol ` ( T ` m ) ) ) ` k ) e. RR ) |
| 102 |
91 92 101
|
serfre |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) : NN --> RR ) |
| 103 |
102
|
frnd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) C_ RR ) |
| 104 |
|
ressxr |
|- RR C_ RR* |
| 105 |
103 104
|
sstrdi |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) C_ RR* ) |
| 106 |
95
|
adantlr |
|- ( ( ( ph /\ 0 < ( vol* ` ran F ) ) /\ m e. NN ) -> ( vol ` ( T ` m ) ) = ( vol* ` ran F ) ) |
| 107 |
106
|
mpteq2dva |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( m e. NN |-> ( vol ` ( T ` m ) ) ) = ( m e. NN |-> ( vol* ` ran F ) ) ) |
| 108 |
|
fconstmpt |
|- ( NN X. { ( vol* ` ran F ) } ) = ( m e. NN |-> ( vol* ` ran F ) ) |
| 109 |
107 108
|
eqtr4di |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( m e. NN |-> ( vol ` ( T ` m ) ) ) = ( NN X. { ( vol* ` ran F ) } ) ) |
| 110 |
109
|
seqeq3d |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) = seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ) |
| 111 |
110
|
fveq1d |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) ) |
| 112 |
48
|
recnd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` ran F ) e. CC ) |
| 113 |
|
ser1const |
|- ( ( ( vol* ` ran F ) e. CC /\ ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) -> ( seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 114 |
112 58 113
|
syl2anc |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 115 |
111 114
|
eqtrd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 116 |
102
|
ffnd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) Fn NN ) |
| 117 |
|
fnfvelrn |
|- ( ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) Fn NN /\ ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) |
| 118 |
116 58 117
|
syl2anc |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) |
| 119 |
115 118
|
eqeltrrd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) |
| 120 |
|
supxrub |
|- ( ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) C_ RR* /\ ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 121 |
105 119 120
|
syl2anc |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 122 |
81
|
adantr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> U_ m e. NN ( T ` m ) e. dom vol ) |
| 123 |
|
mblvol |
|- ( U_ m e. NN ( T ` m ) e. dom vol -> ( vol ` U_ m e. NN ( T ` m ) ) = ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 124 |
122 123
|
syl |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol ` U_ m e. NN ( T ` m ) ) = ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 125 |
78 97
|
jca |
|- ( ( ph /\ m e. NN ) -> ( ( T ` m ) e. dom vol /\ ( vol ` ( T ` m ) ) e. RR ) ) |
| 126 |
125
|
ralrimiva |
|- ( ph -> A. m e. NN ( ( T ` m ) e. dom vol /\ ( vol ` ( T ` m ) ) e. RR ) ) |
| 127 |
1 2 3 4 5 6 7
|
vitalilem3 |
|- ( ph -> Disj_ m e. NN ( T ` m ) ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> Disj_ m e. NN ( T ` m ) ) |
| 129 |
|
eqid |
|- seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) |
| 130 |
129 99
|
voliun |
|- ( ( A. m e. NN ( ( T ` m ) e. dom vol /\ ( vol ` ( T ` m ) ) e. RR ) /\ Disj_ m e. NN ( T ` m ) ) -> ( vol ` U_ m e. NN ( T ` m ) ) = sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 131 |
126 128 130
|
syl2an2r |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol ` U_ m e. NN ( T ` m ) ) = sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 132 |
124 131
|
eqtr3d |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) = sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 133 |
121 132
|
breqtrrd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 134 |
36 61 85 90 133
|
xrltletrd |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 135 |
17
|
simp3d |
|- ( ph -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) |
| 136 |
135
|
adantr |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) |
| 137 |
|
2re |
|- 2 e. RR |
| 138 |
|
iccssre |
|- ( ( -u 1 e. RR /\ 2 e. RR ) -> ( -u 1 [,] 2 ) C_ RR ) |
| 139 |
22 137 138
|
mp2an |
|- ( -u 1 [,] 2 ) C_ RR |
| 140 |
|
ovolss |
|- ( ( U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) /\ ( -u 1 [,] 2 ) C_ RR ) -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ ( vol* ` ( -u 1 [,] 2 ) ) ) |
| 141 |
136 139 140
|
sylancl |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ ( vol* ` ( -u 1 [,] 2 ) ) ) |
| 142 |
|
2cn |
|- 2 e. CC |
| 143 |
|
ax-1cn |
|- 1 e. CC |
| 144 |
142 143
|
subnegi |
|- ( 2 - -u 1 ) = ( 2 + 1 ) |
| 145 |
|
neg1lt0 |
|- -u 1 < 0 |
| 146 |
|
2pos |
|- 0 < 2 |
| 147 |
22 38 137
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 2 ) -> -u 1 < 2 ) |
| 148 |
145 146 147
|
mp2an |
|- -u 1 < 2 |
| 149 |
22 137 148
|
ltleii |
|- -u 1 <_ 2 |
| 150 |
|
ovolicc |
|- ( ( -u 1 e. RR /\ 2 e. RR /\ -u 1 <_ 2 ) -> ( vol* ` ( -u 1 [,] 2 ) ) = ( 2 - -u 1 ) ) |
| 151 |
22 137 149 150
|
mp3an |
|- ( vol* ` ( -u 1 [,] 2 ) ) = ( 2 - -u 1 ) |
| 152 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 153 |
144 151 152
|
3eqtr4i |
|- ( vol* ` ( -u 1 [,] 2 ) ) = 3 |
| 154 |
141 153
|
breqtrdi |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ 3 ) |
| 155 |
|
xrlenlt |
|- ( ( ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* /\ 3 e. RR* ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 3 <-> -. 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) ) |
| 156 |
85 35 155
|
sylancl |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 3 <-> -. 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) ) |
| 157 |
154 156
|
mpbid |
|- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> -. 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 158 |
134 157
|
pm2.65da |
|- ( ph -> -. 0 < ( vol* ` ran F ) ) |
| 159 |
|
ovolge0 |
|- ( ran F C_ RR -> 0 <_ ( vol* ` ran F ) ) |
| 160 |
20 159
|
syl |
|- ( ph -> 0 <_ ( vol* ` ran F ) ) |
| 161 |
|
0xr |
|- 0 e. RR* |
| 162 |
|
ovolcl |
|- ( ran F C_ RR -> ( vol* ` ran F ) e. RR* ) |
| 163 |
20 162
|
syl |
|- ( ph -> ( vol* ` ran F ) e. RR* ) |
| 164 |
|
xrleloe |
|- ( ( 0 e. RR* /\ ( vol* ` ran F ) e. RR* ) -> ( 0 <_ ( vol* ` ran F ) <-> ( 0 < ( vol* ` ran F ) \/ 0 = ( vol* ` ran F ) ) ) ) |
| 165 |
161 163 164
|
sylancr |
|- ( ph -> ( 0 <_ ( vol* ` ran F ) <-> ( 0 < ( vol* ` ran F ) \/ 0 = ( vol* ` ran F ) ) ) ) |
| 166 |
160 165
|
mpbid |
|- ( ph -> ( 0 < ( vol* ` ran F ) \/ 0 = ( vol* ` ran F ) ) ) |
| 167 |
166
|
ord |
|- ( ph -> ( -. 0 < ( vol* ` ran F ) -> 0 = ( vol* ` ran F ) ) ) |
| 168 |
158 167
|
mpd |
|- ( ph -> 0 = ( vol* ` ran F ) ) |
| 169 |
168
|
adantr |
|- ( ( ph /\ m e. NN ) -> 0 = ( vol* ` ran F ) ) |
| 170 |
33 169
|
eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = 0 ) |