| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vitali.1 |  |-  .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } | 
						
							| 2 |  | vitali.2 |  |-  S = ( ( 0 [,] 1 ) /. .~ ) | 
						
							| 3 |  | vitali.3 |  |-  ( ph -> F Fn S ) | 
						
							| 4 |  | vitali.4 |  |-  ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) | 
						
							| 5 |  | vitali.5 |  |-  ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 6 |  | vitali.6 |  |-  T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) | 
						
							| 7 |  | vitali.7 |  |-  ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) | 
						
							| 8 |  | 0lt1 |  |-  0 < 1 | 
						
							| 9 |  | 0re |  |-  0 e. RR | 
						
							| 10 |  | 1re |  |-  1 e. RR | 
						
							| 11 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 12 |  | ovolicc |  |-  ( ( 0 e. RR /\ 1 e. RR /\ 0 <_ 1 ) -> ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) ) | 
						
							| 13 | 9 10 11 12 | mp3an |  |-  ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) | 
						
							| 14 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 15 | 13 14 | eqtri |  |-  ( vol* ` ( 0 [,] 1 ) ) = 1 | 
						
							| 16 | 8 15 | breqtrri |  |-  0 < ( vol* ` ( 0 [,] 1 ) ) | 
						
							| 17 | 15 10 | eqeltri |  |-  ( vol* ` ( 0 [,] 1 ) ) e. RR | 
						
							| 18 | 9 17 | ltnlei |  |-  ( 0 < ( vol* ` ( 0 [,] 1 ) ) <-> -. ( vol* ` ( 0 [,] 1 ) ) <_ 0 ) | 
						
							| 19 | 16 18 | mpbi |  |-  -. ( vol* ` ( 0 [,] 1 ) ) <_ 0 | 
						
							| 20 | 1 2 3 4 5 6 7 | vitalilem2 |  |-  ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) | 
						
							| 21 | 20 | simp2d |  |-  ( ph -> ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) ) | 
						
							| 22 | 1 | vitalilem1 |  |-  .~ Er ( 0 [,] 1 ) | 
						
							| 23 |  | erdm |  |-  ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  dom .~ = ( 0 [,] 1 ) | 
						
							| 25 |  | simpr |  |-  ( ( ph /\ z e. S ) -> z e. S ) | 
						
							| 26 | 25 2 | eleqtrdi |  |-  ( ( ph /\ z e. S ) -> z e. ( ( 0 [,] 1 ) /. .~ ) ) | 
						
							| 27 |  | elqsn0 |  |-  ( ( dom .~ = ( 0 [,] 1 ) /\ z e. ( ( 0 [,] 1 ) /. .~ ) ) -> z =/= (/) ) | 
						
							| 28 | 24 26 27 | sylancr |  |-  ( ( ph /\ z e. S ) -> z =/= (/) ) | 
						
							| 29 | 22 | a1i |  |-  ( ph -> .~ Er ( 0 [,] 1 ) ) | 
						
							| 30 | 29 | qsss |  |-  ( ph -> ( ( 0 [,] 1 ) /. .~ ) C_ ~P ( 0 [,] 1 ) ) | 
						
							| 31 | 2 30 | eqsstrid |  |-  ( ph -> S C_ ~P ( 0 [,] 1 ) ) | 
						
							| 32 | 31 | sselda |  |-  ( ( ph /\ z e. S ) -> z e. ~P ( 0 [,] 1 ) ) | 
						
							| 33 | 32 | elpwid |  |-  ( ( ph /\ z e. S ) -> z C_ ( 0 [,] 1 ) ) | 
						
							| 34 | 33 | sseld |  |-  ( ( ph /\ z e. S ) -> ( ( F ` z ) e. z -> ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 35 | 28 34 | embantd |  |-  ( ( ph /\ z e. S ) -> ( ( z =/= (/) -> ( F ` z ) e. z ) -> ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 36 | 35 | ralimdva |  |-  ( ph -> ( A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 37 | 4 36 | mpd |  |-  ( ph -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) | 
						
							| 38 |  | ffnfv |  |-  ( F : S --> ( 0 [,] 1 ) <-> ( F Fn S /\ A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) | 
						
							| 39 | 3 37 38 | sylanbrc |  |-  ( ph -> F : S --> ( 0 [,] 1 ) ) | 
						
							| 40 | 39 | frnd |  |-  ( ph -> ran F C_ ( 0 [,] 1 ) ) | 
						
							| 41 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 42 | 40 41 | sstrdi |  |-  ( ph -> ran F C_ RR ) | 
						
							| 43 |  | reex |  |-  RR e. _V | 
						
							| 44 | 43 | elpw2 |  |-  ( ran F e. ~P RR <-> ran F C_ RR ) | 
						
							| 45 | 42 44 | sylibr |  |-  ( ph -> ran F e. ~P RR ) | 
						
							| 46 | 45 | anim1i |  |-  ( ( ph /\ -. ran F e. dom vol ) -> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) | 
						
							| 47 |  | eldif |  |-  ( ran F e. ( ~P RR \ dom vol ) <-> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) | 
						
							| 48 | 46 47 | sylibr |  |-  ( ( ph /\ -. ran F e. dom vol ) -> ran F e. ( ~P RR \ dom vol ) ) | 
						
							| 49 | 48 | ex |  |-  ( ph -> ( -. ran F e. dom vol -> ran F e. ( ~P RR \ dom vol ) ) ) | 
						
							| 50 | 7 49 | mt3d |  |-  ( ph -> ran F e. dom vol ) | 
						
							| 51 |  | f1of |  |-  ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 52 | 5 51 | syl |  |-  ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) | 
						
							| 53 |  | inss1 |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ | 
						
							| 54 |  | qssre |  |-  QQ C_ RR | 
						
							| 55 | 53 54 | sstri |  |-  ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR | 
						
							| 56 |  | fss |  |-  ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR ) -> G : NN --> RR ) | 
						
							| 57 | 52 55 56 | sylancl |  |-  ( ph -> G : NN --> RR ) | 
						
							| 58 | 57 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) | 
						
							| 59 |  | shftmbl |  |-  ( ( ran F e. dom vol /\ ( G ` n ) e. RR ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) | 
						
							| 60 | 50 58 59 | syl2an2r |  |-  ( ( ph /\ n e. NN ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) | 
						
							| 61 | 60 6 | fmptd |  |-  ( ph -> T : NN --> dom vol ) | 
						
							| 62 | 61 | ffvelcdmda |  |-  ( ( ph /\ m e. NN ) -> ( T ` m ) e. dom vol ) | 
						
							| 63 | 62 | ralrimiva |  |-  ( ph -> A. m e. NN ( T ` m ) e. dom vol ) | 
						
							| 64 |  | iunmbl |  |-  ( A. m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) e. dom vol ) | 
						
							| 65 | 63 64 | syl |  |-  ( ph -> U_ m e. NN ( T ` m ) e. dom vol ) | 
						
							| 66 |  | mblss |  |-  ( U_ m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) C_ RR ) | 
						
							| 67 | 65 66 | syl |  |-  ( ph -> U_ m e. NN ( T ` m ) C_ RR ) | 
						
							| 68 |  | ovolss |  |-  ( ( ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ RR ) -> ( vol* ` ( 0 [,] 1 ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) | 
						
							| 69 | 21 67 68 | syl2anc |  |-  ( ph -> ( vol* ` ( 0 [,] 1 ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) | 
						
							| 70 |  | eqid |  |-  seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) | 
						
							| 71 |  | eqid |  |-  ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( m e. NN |-> ( vol* ` ( T ` m ) ) ) | 
						
							| 72 |  | mblss |  |-  ( ( T ` m ) e. dom vol -> ( T ` m ) C_ RR ) | 
						
							| 73 | 62 72 | syl |  |-  ( ( ph /\ m e. NN ) -> ( T ` m ) C_ RR ) | 
						
							| 74 | 1 2 3 4 5 6 7 | vitalilem4 |  |-  ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = 0 ) | 
						
							| 75 | 74 9 | eqeltrdi |  |-  ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) e. RR ) | 
						
							| 76 | 74 | mpteq2dva |  |-  ( ph -> ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( m e. NN |-> 0 ) ) | 
						
							| 77 |  | fconstmpt |  |-  ( NN X. { 0 } ) = ( m e. NN |-> 0 ) | 
						
							| 78 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 79 | 78 | xpeq1i |  |-  ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) | 
						
							| 80 | 77 79 | eqtr3i |  |-  ( m e. NN |-> 0 ) = ( ( ZZ>= ` 1 ) X. { 0 } ) | 
						
							| 81 | 76 80 | eqtrdi |  |-  ( ph -> ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( ( ZZ>= ` 1 ) X. { 0 } ) ) | 
						
							| 82 | 81 | seqeq3d |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) = seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) | 
						
							| 83 |  | 1z |  |-  1 e. ZZ | 
						
							| 84 |  | serclim0 |  |-  ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) | 
						
							| 85 | 83 84 | ax-mp |  |-  seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 | 
						
							| 86 | 82 85 | eqbrtrdi |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) ~~> 0 ) | 
						
							| 87 |  | seqex |  |-  seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. _V | 
						
							| 88 |  | c0ex |  |-  0 e. _V | 
						
							| 89 | 87 88 | breldm |  |-  ( seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) ~~> 0 -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. dom ~~> ) | 
						
							| 90 | 86 89 | syl |  |-  ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. dom ~~> ) | 
						
							| 91 | 70 71 73 75 90 | ovoliun2 |  |-  ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ sum_ m e. NN ( vol* ` ( T ` m ) ) ) | 
						
							| 92 | 74 | sumeq2dv |  |-  ( ph -> sum_ m e. NN ( vol* ` ( T ` m ) ) = sum_ m e. NN 0 ) | 
						
							| 93 | 78 | eqimssi |  |-  NN C_ ( ZZ>= ` 1 ) | 
						
							| 94 | 93 | orci |  |-  ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) | 
						
							| 95 |  | sumz |  |-  ( ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) -> sum_ m e. NN 0 = 0 ) | 
						
							| 96 | 94 95 | ax-mp |  |-  sum_ m e. NN 0 = 0 | 
						
							| 97 | 92 96 | eqtrdi |  |-  ( ph -> sum_ m e. NN ( vol* ` ( T ` m ) ) = 0 ) | 
						
							| 98 | 91 97 | breqtrd |  |-  ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 ) | 
						
							| 99 |  | ovolge0 |  |-  ( U_ m e. NN ( T ` m ) C_ RR -> 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) | 
						
							| 100 | 67 99 | syl |  |-  ( ph -> 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) | 
						
							| 101 |  | ovolcl |  |-  ( U_ m e. NN ( T ` m ) C_ RR -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) | 
						
							| 102 | 67 101 | syl |  |-  ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) | 
						
							| 103 |  | 0xr |  |-  0 e. RR* | 
						
							| 104 |  | xrletri3 |  |-  ( ( ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) = 0 <-> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 /\ 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) ) ) | 
						
							| 105 | 102 103 104 | sylancl |  |-  ( ph -> ( ( vol* ` U_ m e. NN ( T ` m ) ) = 0 <-> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 /\ 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) ) ) | 
						
							| 106 | 98 100 105 | mpbir2and |  |-  ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) = 0 ) | 
						
							| 107 | 69 106 | breqtrd |  |-  ( ph -> ( vol* ` ( 0 [,] 1 ) ) <_ 0 ) | 
						
							| 108 | 19 107 | mto |  |-  -. ph |