Step |
Hyp |
Ref |
Expression |
1 |
|
vitali.1 |
|- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
2 |
|
vitali.2 |
|- S = ( ( 0 [,] 1 ) /. .~ ) |
3 |
|
vitali.3 |
|- ( ph -> F Fn S ) |
4 |
|
vitali.4 |
|- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
5 |
|
vitali.5 |
|- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
6 |
|
vitali.6 |
|- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
7 |
|
vitali.7 |
|- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
8 |
|
0lt1 |
|- 0 < 1 |
9 |
|
0re |
|- 0 e. RR |
10 |
|
1re |
|- 1 e. RR |
11 |
|
0le1 |
|- 0 <_ 1 |
12 |
|
ovolicc |
|- ( ( 0 e. RR /\ 1 e. RR /\ 0 <_ 1 ) -> ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) ) |
13 |
9 10 11 12
|
mp3an |
|- ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) |
14 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
15 |
13 14
|
eqtri |
|- ( vol* ` ( 0 [,] 1 ) ) = 1 |
16 |
8 15
|
breqtrri |
|- 0 < ( vol* ` ( 0 [,] 1 ) ) |
17 |
15 10
|
eqeltri |
|- ( vol* ` ( 0 [,] 1 ) ) e. RR |
18 |
9 17
|
ltnlei |
|- ( 0 < ( vol* ` ( 0 [,] 1 ) ) <-> -. ( vol* ` ( 0 [,] 1 ) ) <_ 0 ) |
19 |
16 18
|
mpbi |
|- -. ( vol* ` ( 0 [,] 1 ) ) <_ 0 |
20 |
1 2 3 4 5 6 7
|
vitalilem2 |
|- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
21 |
20
|
simp2d |
|- ( ph -> ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) ) |
22 |
1
|
vitalilem1 |
|- .~ Er ( 0 [,] 1 ) |
23 |
|
erdm |
|- ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) |
24 |
22 23
|
ax-mp |
|- dom .~ = ( 0 [,] 1 ) |
25 |
|
simpr |
|- ( ( ph /\ z e. S ) -> z e. S ) |
26 |
25 2
|
eleqtrdi |
|- ( ( ph /\ z e. S ) -> z e. ( ( 0 [,] 1 ) /. .~ ) ) |
27 |
|
elqsn0 |
|- ( ( dom .~ = ( 0 [,] 1 ) /\ z e. ( ( 0 [,] 1 ) /. .~ ) ) -> z =/= (/) ) |
28 |
24 26 27
|
sylancr |
|- ( ( ph /\ z e. S ) -> z =/= (/) ) |
29 |
22
|
a1i |
|- ( ph -> .~ Er ( 0 [,] 1 ) ) |
30 |
29
|
qsss |
|- ( ph -> ( ( 0 [,] 1 ) /. .~ ) C_ ~P ( 0 [,] 1 ) ) |
31 |
2 30
|
eqsstrid |
|- ( ph -> S C_ ~P ( 0 [,] 1 ) ) |
32 |
31
|
sselda |
|- ( ( ph /\ z e. S ) -> z e. ~P ( 0 [,] 1 ) ) |
33 |
32
|
elpwid |
|- ( ( ph /\ z e. S ) -> z C_ ( 0 [,] 1 ) ) |
34 |
33
|
sseld |
|- ( ( ph /\ z e. S ) -> ( ( F ` z ) e. z -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
35 |
28 34
|
embantd |
|- ( ( ph /\ z e. S ) -> ( ( z =/= (/) -> ( F ` z ) e. z ) -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
36 |
35
|
ralimdva |
|- ( ph -> ( A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
37 |
4 36
|
mpd |
|- ( ph -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) |
38 |
|
ffnfv |
|- ( F : S --> ( 0 [,] 1 ) <-> ( F Fn S /\ A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
39 |
3 37 38
|
sylanbrc |
|- ( ph -> F : S --> ( 0 [,] 1 ) ) |
40 |
39
|
frnd |
|- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
41 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
42 |
40 41
|
sstrdi |
|- ( ph -> ran F C_ RR ) |
43 |
|
reex |
|- RR e. _V |
44 |
43
|
elpw2 |
|- ( ran F e. ~P RR <-> ran F C_ RR ) |
45 |
42 44
|
sylibr |
|- ( ph -> ran F e. ~P RR ) |
46 |
45
|
anim1i |
|- ( ( ph /\ -. ran F e. dom vol ) -> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
47 |
|
eldif |
|- ( ran F e. ( ~P RR \ dom vol ) <-> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
48 |
46 47
|
sylibr |
|- ( ( ph /\ -. ran F e. dom vol ) -> ran F e. ( ~P RR \ dom vol ) ) |
49 |
48
|
ex |
|- ( ph -> ( -. ran F e. dom vol -> ran F e. ( ~P RR \ dom vol ) ) ) |
50 |
7 49
|
mt3d |
|- ( ph -> ran F e. dom vol ) |
51 |
|
f1of |
|- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
52 |
5 51
|
syl |
|- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
53 |
|
inss1 |
|- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
54 |
|
qssre |
|- QQ C_ RR |
55 |
53 54
|
sstri |
|- ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR |
56 |
|
fss |
|- ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR ) -> G : NN --> RR ) |
57 |
52 55 56
|
sylancl |
|- ( ph -> G : NN --> RR ) |
58 |
57
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
59 |
|
shftmbl |
|- ( ( ran F e. dom vol /\ ( G ` n ) e. RR ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
60 |
50 58 59
|
syl2an2r |
|- ( ( ph /\ n e. NN ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
61 |
60 6
|
fmptd |
|- ( ph -> T : NN --> dom vol ) |
62 |
61
|
ffvelrnda |
|- ( ( ph /\ m e. NN ) -> ( T ` m ) e. dom vol ) |
63 |
62
|
ralrimiva |
|- ( ph -> A. m e. NN ( T ` m ) e. dom vol ) |
64 |
|
iunmbl |
|- ( A. m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) e. dom vol ) |
65 |
63 64
|
syl |
|- ( ph -> U_ m e. NN ( T ` m ) e. dom vol ) |
66 |
|
mblss |
|- ( U_ m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) C_ RR ) |
67 |
65 66
|
syl |
|- ( ph -> U_ m e. NN ( T ` m ) C_ RR ) |
68 |
|
ovolss |
|- ( ( ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ RR ) -> ( vol* ` ( 0 [,] 1 ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
69 |
21 67 68
|
syl2anc |
|- ( ph -> ( vol* ` ( 0 [,] 1 ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
70 |
|
eqid |
|- seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) |
71 |
|
eqid |
|- ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( m e. NN |-> ( vol* ` ( T ` m ) ) ) |
72 |
|
mblss |
|- ( ( T ` m ) e. dom vol -> ( T ` m ) C_ RR ) |
73 |
62 72
|
syl |
|- ( ( ph /\ m e. NN ) -> ( T ` m ) C_ RR ) |
74 |
1 2 3 4 5 6 7
|
vitalilem4 |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = 0 ) |
75 |
74 9
|
eqeltrdi |
|- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) e. RR ) |
76 |
74
|
mpteq2dva |
|- ( ph -> ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( m e. NN |-> 0 ) ) |
77 |
|
fconstmpt |
|- ( NN X. { 0 } ) = ( m e. NN |-> 0 ) |
78 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
79 |
78
|
xpeq1i |
|- ( NN X. { 0 } ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
80 |
77 79
|
eqtr3i |
|- ( m e. NN |-> 0 ) = ( ( ZZ>= ` 1 ) X. { 0 } ) |
81 |
76 80
|
eqtrdi |
|- ( ph -> ( m e. NN |-> ( vol* ` ( T ` m ) ) ) = ( ( ZZ>= ` 1 ) X. { 0 } ) ) |
82 |
81
|
seqeq3d |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) = seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ) |
83 |
|
1z |
|- 1 e. ZZ |
84 |
|
serclim0 |
|- ( 1 e. ZZ -> seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 ) |
85 |
83 84
|
ax-mp |
|- seq 1 ( + , ( ( ZZ>= ` 1 ) X. { 0 } ) ) ~~> 0 |
86 |
82 85
|
eqbrtrdi |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) ~~> 0 ) |
87 |
|
seqex |
|- seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. _V |
88 |
|
c0ex |
|- 0 e. _V |
89 |
87 88
|
breldm |
|- ( seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) ~~> 0 -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. dom ~~> ) |
90 |
86 89
|
syl |
|- ( ph -> seq 1 ( + , ( m e. NN |-> ( vol* ` ( T ` m ) ) ) ) e. dom ~~> ) |
91 |
70 71 73 75 90
|
ovoliun2 |
|- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ sum_ m e. NN ( vol* ` ( T ` m ) ) ) |
92 |
74
|
sumeq2dv |
|- ( ph -> sum_ m e. NN ( vol* ` ( T ` m ) ) = sum_ m e. NN 0 ) |
93 |
78
|
eqimssi |
|- NN C_ ( ZZ>= ` 1 ) |
94 |
93
|
orci |
|- ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) |
95 |
|
sumz |
|- ( ( NN C_ ( ZZ>= ` 1 ) \/ NN e. Fin ) -> sum_ m e. NN 0 = 0 ) |
96 |
94 95
|
ax-mp |
|- sum_ m e. NN 0 = 0 |
97 |
92 96
|
eqtrdi |
|- ( ph -> sum_ m e. NN ( vol* ` ( T ` m ) ) = 0 ) |
98 |
91 97
|
breqtrd |
|- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 ) |
99 |
|
ovolge0 |
|- ( U_ m e. NN ( T ` m ) C_ RR -> 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
100 |
67 99
|
syl |
|- ( ph -> 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
101 |
|
ovolcl |
|- ( U_ m e. NN ( T ` m ) C_ RR -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
102 |
67 101
|
syl |
|- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
103 |
|
0xr |
|- 0 e. RR* |
104 |
|
xrletri3 |
|- ( ( ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* /\ 0 e. RR* ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) = 0 <-> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 /\ 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) ) ) |
105 |
102 103 104
|
sylancl |
|- ( ph -> ( ( vol* ` U_ m e. NN ( T ` m ) ) = 0 <-> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 0 /\ 0 <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) ) ) |
106 |
98 100 105
|
mpbir2and |
|- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) = 0 ) |
107 |
69 106
|
breqtrd |
|- ( ph -> ( vol* ` ( 0 [,] 1 ) ) <_ 0 ) |
108 |
19 107
|
mto |
|- -. ph |