Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( ( p e. Prime /\ k e. NN ) -> 1 e. RR ) |
2 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
3 |
2
|
adantr |
|- ( ( p e. Prime /\ k e. NN ) -> p e. ( ZZ>= ` 2 ) ) |
4 |
|
eluz2b2 |
|- ( p e. ( ZZ>= ` 2 ) <-> ( p e. NN /\ 1 < p ) ) |
5 |
3 4
|
sylib |
|- ( ( p e. Prime /\ k e. NN ) -> ( p e. NN /\ 1 < p ) ) |
6 |
5
|
simpld |
|- ( ( p e. Prime /\ k e. NN ) -> p e. NN ) |
7 |
6
|
nnred |
|- ( ( p e. Prime /\ k e. NN ) -> p e. RR ) |
8 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
9 |
8
|
adantl |
|- ( ( p e. Prime /\ k e. NN ) -> k e. NN0 ) |
10 |
7 9
|
reexpcld |
|- ( ( p e. Prime /\ k e. NN ) -> ( p ^ k ) e. RR ) |
11 |
5
|
simprd |
|- ( ( p e. Prime /\ k e. NN ) -> 1 < p ) |
12 |
6
|
nncnd |
|- ( ( p e. Prime /\ k e. NN ) -> p e. CC ) |
13 |
12
|
exp1d |
|- ( ( p e. Prime /\ k e. NN ) -> ( p ^ 1 ) = p ) |
14 |
6
|
nnge1d |
|- ( ( p e. Prime /\ k e. NN ) -> 1 <_ p ) |
15 |
|
simpr |
|- ( ( p e. Prime /\ k e. NN ) -> k e. NN ) |
16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
17 |
15 16
|
eleqtrdi |
|- ( ( p e. Prime /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
18 |
7 14 17
|
leexp2ad |
|- ( ( p e. Prime /\ k e. NN ) -> ( p ^ 1 ) <_ ( p ^ k ) ) |
19 |
13 18
|
eqbrtrrd |
|- ( ( p e. Prime /\ k e. NN ) -> p <_ ( p ^ k ) ) |
20 |
1 7 10 11 19
|
ltletrd |
|- ( ( p e. Prime /\ k e. NN ) -> 1 < ( p ^ k ) ) |
21 |
1 20
|
ltned |
|- ( ( p e. Prime /\ k e. NN ) -> 1 =/= ( p ^ k ) ) |
22 |
21
|
neneqd |
|- ( ( p e. Prime /\ k e. NN ) -> -. 1 = ( p ^ k ) ) |
23 |
22
|
nrexdv |
|- ( p e. Prime -> -. E. k e. NN 1 = ( p ^ k ) ) |
24 |
23
|
nrex |
|- -. E. p e. Prime E. k e. NN 1 = ( p ^ k ) |
25 |
|
1nn |
|- 1 e. NN |
26 |
|
isppw2 |
|- ( 1 e. NN -> ( ( Lam ` 1 ) =/= 0 <-> E. p e. Prime E. k e. NN 1 = ( p ^ k ) ) ) |
27 |
25 26
|
ax-mp |
|- ( ( Lam ` 1 ) =/= 0 <-> E. p e. Prime E. k e. NN 1 = ( p ^ k ) ) |
28 |
27
|
necon1bbii |
|- ( -. E. p e. Prime E. k e. NN 1 = ( p ^ k ) <-> ( Lam ` 1 ) = 0 ) |
29 |
24 28
|
mpbi |
|- ( Lam ` 1 ) = 0 |