Metamath Proof Explorer


Theorem vma1

Description: The von Mangoldt function at 1 . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion vma1
|- ( Lam ` 1 ) = 0

Proof

Step Hyp Ref Expression
1 1red
 |-  ( ( p e. Prime /\ k e. NN ) -> 1 e. RR )
2 prmuz2
 |-  ( p e. Prime -> p e. ( ZZ>= ` 2 ) )
3 2 adantr
 |-  ( ( p e. Prime /\ k e. NN ) -> p e. ( ZZ>= ` 2 ) )
4 eluz2b2
 |-  ( p e. ( ZZ>= ` 2 ) <-> ( p e. NN /\ 1 < p ) )
5 3 4 sylib
 |-  ( ( p e. Prime /\ k e. NN ) -> ( p e. NN /\ 1 < p ) )
6 5 simpld
 |-  ( ( p e. Prime /\ k e. NN ) -> p e. NN )
7 6 nnred
 |-  ( ( p e. Prime /\ k e. NN ) -> p e. RR )
8 nnnn0
 |-  ( k e. NN -> k e. NN0 )
9 8 adantl
 |-  ( ( p e. Prime /\ k e. NN ) -> k e. NN0 )
10 7 9 reexpcld
 |-  ( ( p e. Prime /\ k e. NN ) -> ( p ^ k ) e. RR )
11 5 simprd
 |-  ( ( p e. Prime /\ k e. NN ) -> 1 < p )
12 6 nncnd
 |-  ( ( p e. Prime /\ k e. NN ) -> p e. CC )
13 12 exp1d
 |-  ( ( p e. Prime /\ k e. NN ) -> ( p ^ 1 ) = p )
14 6 nnge1d
 |-  ( ( p e. Prime /\ k e. NN ) -> 1 <_ p )
15 simpr
 |-  ( ( p e. Prime /\ k e. NN ) -> k e. NN )
16 nnuz
 |-  NN = ( ZZ>= ` 1 )
17 15 16 eleqtrdi
 |-  ( ( p e. Prime /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) )
18 7 14 17 leexp2ad
 |-  ( ( p e. Prime /\ k e. NN ) -> ( p ^ 1 ) <_ ( p ^ k ) )
19 13 18 eqbrtrrd
 |-  ( ( p e. Prime /\ k e. NN ) -> p <_ ( p ^ k ) )
20 1 7 10 11 19 ltletrd
 |-  ( ( p e. Prime /\ k e. NN ) -> 1 < ( p ^ k ) )
21 1 20 ltned
 |-  ( ( p e. Prime /\ k e. NN ) -> 1 =/= ( p ^ k ) )
22 21 neneqd
 |-  ( ( p e. Prime /\ k e. NN ) -> -. 1 = ( p ^ k ) )
23 22 nrexdv
 |-  ( p e. Prime -> -. E. k e. NN 1 = ( p ^ k ) )
24 23 nrex
 |-  -. E. p e. Prime E. k e. NN 1 = ( p ^ k )
25 1nn
 |-  1 e. NN
26 isppw2
 |-  ( 1 e. NN -> ( ( Lam ` 1 ) =/= 0 <-> E. p e. Prime E. k e. NN 1 = ( p ^ k ) ) )
27 25 26 ax-mp
 |-  ( ( Lam ` 1 ) =/= 0 <-> E. p e. Prime E. k e. NN 1 = ( p ^ k ) )
28 27 necon1bbii
 |-  ( -. E. p e. Prime E. k e. NN 1 = ( p ^ k ) <-> ( Lam ` 1 ) = 0 )
29 24 28 mpbi
 |-  ( Lam ` 1 ) = 0