Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( ( Lam ` A ) = 0 -> ( ( Lam ` A ) e. RR <-> 0 e. RR ) ) |
2 |
|
isppw2 |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
3 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
4 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
5 |
4
|
nnrpd |
|- ( p e. Prime -> p e. RR+ ) |
6 |
5
|
relogcld |
|- ( p e. Prime -> ( log ` p ) e. RR ) |
7 |
6
|
adantr |
|- ( ( p e. Prime /\ k e. NN ) -> ( log ` p ) e. RR ) |
8 |
3 7
|
eqeltrd |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) e. RR ) |
9 |
|
fveq2 |
|- ( A = ( p ^ k ) -> ( Lam ` A ) = ( Lam ` ( p ^ k ) ) ) |
10 |
9
|
eleq1d |
|- ( A = ( p ^ k ) -> ( ( Lam ` A ) e. RR <-> ( Lam ` ( p ^ k ) ) e. RR ) ) |
11 |
8 10
|
syl5ibrcom |
|- ( ( p e. Prime /\ k e. NN ) -> ( A = ( p ^ k ) -> ( Lam ` A ) e. RR ) ) |
12 |
11
|
rexlimivv |
|- ( E. p e. Prime E. k e. NN A = ( p ^ k ) -> ( Lam ` A ) e. RR ) |
13 |
2 12
|
syl6bi |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 -> ( Lam ` A ) e. RR ) ) |
14 |
13
|
imp |
|- ( ( A e. NN /\ ( Lam ` A ) =/= 0 ) -> ( Lam ` A ) e. RR ) |
15 |
|
0red |
|- ( A e. NN -> 0 e. RR ) |
16 |
1 14 15
|
pm2.61ne |
|- ( A e. NN -> ( Lam ` A ) e. RR ) |