| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reex |  |-  RR e. _V | 
						
							| 2 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 3 | 1 2 | ssexi |  |-  RR+ e. _V | 
						
							| 4 | 3 | a1i |  |-  ( T. -> RR+ e. _V ) | 
						
							| 5 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) e. _V ) | 
						
							| 6 |  | ovexd |  |-  ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) e. _V ) | 
						
							| 7 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) | 
						
							| 8 |  | eqidd |  |-  ( T. -> ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) = ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) | 
						
							| 9 | 4 5 6 7 8 | offval2 |  |-  ( T. -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) oF - ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) ) | 
						
							| 10 | 9 | mptru |  |-  ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) oF - ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) | 
						
							| 11 |  | fzfid |  |-  ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 12 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 13 | 12 | adantl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 14 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 16 | 15 13 | nndivred |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 17 | 11 16 | fsumrecl |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 19 |  | relogcl |  |-  ( x e. RR+ -> ( log ` x ) e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( x e. RR+ -> ( log ` x ) e. CC ) | 
						
							| 21 |  | rprege0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) | 
						
							| 22 |  | flge0nn0 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) | 
						
							| 23 |  | faccl |  |-  ( ( |_ ` x ) e. NN0 -> ( ! ` ( |_ ` x ) ) e. NN ) | 
						
							| 24 | 21 22 23 | 3syl |  |-  ( x e. RR+ -> ( ! ` ( |_ ` x ) ) e. NN ) | 
						
							| 25 | 24 | nnrpd |  |-  ( x e. RR+ -> ( ! ` ( |_ ` x ) ) e. RR+ ) | 
						
							| 26 | 25 | relogcld |  |-  ( x e. RR+ -> ( log ` ( ! ` ( |_ ` x ) ) ) e. RR ) | 
						
							| 27 |  | rerpdivcl |  |-  ( ( ( log ` ( ! ` ( |_ ` x ) ) ) e. RR /\ x e. RR+ ) -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. RR ) | 
						
							| 28 | 26 27 | mpancom |  |-  ( x e. RR+ -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( x e. RR+ -> ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) e. CC ) | 
						
							| 30 | 18 20 29 | nnncan2d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) | 
						
							| 31 | 30 | mpteq2ia |  |-  ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) - ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) | 
						
							| 32 | 10 31 | eqtri |  |-  ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) oF - ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) | 
						
							| 33 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 34 |  | chpo1ub |  |-  ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) | 
						
							| 35 | 34 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) ) | 
						
							| 36 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 37 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 38 | 36 37 | syl |  |-  ( x e. RR+ -> ( psi ` x ) e. RR ) | 
						
							| 39 |  | rerpdivcl |  |-  ( ( ( psi ` x ) e. RR /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) | 
						
							| 40 | 38 39 | mpancom |  |-  ( x e. RR+ -> ( ( psi ` x ) / x ) e. RR ) | 
						
							| 41 | 40 | recnd |  |-  ( x e. RR+ -> ( ( psi ` x ) / x ) e. CC ) | 
						
							| 42 | 41 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. CC ) | 
						
							| 43 | 18 29 | subcld |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) e. CC ) | 
						
							| 44 | 43 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) e. CC ) | 
						
							| 45 | 36 | adantr |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 46 | 16 45 | remulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. x ) e. RR ) | 
						
							| 47 |  | nndivre |  |-  ( ( x e. RR /\ n e. NN ) -> ( x / n ) e. RR ) | 
						
							| 48 | 36 12 47 | syl2an |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 49 |  | reflcl |  |-  ( ( x / n ) e. RR -> ( |_ ` ( x / n ) ) e. RR ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. RR ) | 
						
							| 51 | 15 50 | remulcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) e. RR ) | 
						
							| 52 | 46 51 | resubcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) e. RR ) | 
						
							| 53 | 48 50 | resubcld |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) e. RR ) | 
						
							| 54 |  | 1red |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 55 |  | vmage0 |  |-  ( n e. NN -> 0 <_ ( Lam ` n ) ) | 
						
							| 56 | 13 55 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) | 
						
							| 57 |  | fracle1 |  |-  ( ( x / n ) e. RR -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) <_ 1 ) | 
						
							| 58 | 48 57 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( x / n ) - ( |_ ` ( x / n ) ) ) <_ 1 ) | 
						
							| 59 | 53 54 15 56 58 | lemul2ad |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) <_ ( ( Lam ` n ) x. 1 ) ) | 
						
							| 60 | 15 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 61 | 48 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 62 | 50 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) e. CC ) | 
						
							| 63 | 60 61 62 | subdid |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) = ( ( ( Lam ` n ) x. ( x / n ) ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 64 |  | rpcn |  |-  ( x e. RR+ -> x e. CC ) | 
						
							| 65 | 64 | adantr |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 66 | 13 | nnrpd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 67 |  | rpcnne0 |  |-  ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 69 |  | div23 |  |-  ( ( ( Lam ` n ) e. CC /\ x e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( Lam ` n ) x. x ) / n ) = ( ( ( Lam ` n ) / n ) x. x ) ) | 
						
							| 70 |  | divass |  |-  ( ( ( Lam ` n ) e. CC /\ x e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( Lam ` n ) x. x ) / n ) = ( ( Lam ` n ) x. ( x / n ) ) ) | 
						
							| 71 | 69 70 | eqtr3d |  |-  ( ( ( Lam ` n ) e. CC /\ x e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( ( Lam ` n ) / n ) x. x ) = ( ( Lam ` n ) x. ( x / n ) ) ) | 
						
							| 72 | 60 65 68 71 | syl3anc |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. x ) = ( ( Lam ` n ) x. ( x / n ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) = ( ( ( Lam ` n ) x. ( x / n ) ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 74 | 63 73 | eqtr4d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) = ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 75 | 60 | mulridd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. 1 ) = ( Lam ` n ) ) | 
						
							| 76 | 59 74 75 | 3brtr3d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) <_ ( Lam ` n ) ) | 
						
							| 77 | 11 52 15 76 | fsumle |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) ) | 
						
							| 78 | 16 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 79 | 11 64 78 | fsummulc1 |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. x ) ) | 
						
							| 80 |  | logfac2 |  |-  ( ( x e. RR /\ 0 <_ x ) -> ( log ` ( ! ` ( |_ ` x ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) | 
						
							| 81 | 21 80 | syl |  |-  ( x e. RR+ -> ( log ` ( ! ` ( |_ ` x ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) | 
						
							| 82 | 79 81 | oveq12d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. x ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 83 | 46 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. x ) e. CC ) | 
						
							| 84 | 51 | recnd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) e. CC ) | 
						
							| 85 | 11 83 84 | fsumsub |  |-  ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. x ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 86 | 82 85 | eqtr4d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 87 |  | chpval |  |-  ( x e. RR -> ( psi ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) ) | 
						
							| 88 | 36 87 | syl |  |-  ( x e. RR+ -> ( psi ` x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) ) | 
						
							| 89 | 77 86 88 | 3brtr4d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) <_ ( psi ` x ) ) | 
						
							| 90 | 17 36 | remulcld |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) e. RR ) | 
						
							| 91 | 90 26 | resubcld |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) e. RR ) | 
						
							| 92 |  | rpregt0 |  |-  ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) | 
						
							| 93 |  | lediv1 |  |-  ( ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) e. RR /\ ( psi ` x ) e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) <_ ( psi ` x ) <-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) <_ ( ( psi ` x ) / x ) ) ) | 
						
							| 94 | 91 38 92 93 | syl3anc |  |-  ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) <_ ( psi ` x ) <-> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) <_ ( ( psi ` x ) / x ) ) ) | 
						
							| 95 | 89 94 | mpbid |  |-  ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) <_ ( ( psi ` x ) / x ) ) | 
						
							| 96 | 90 | recnd |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) e. CC ) | 
						
							| 97 | 26 | recnd |  |-  ( x e. RR+ -> ( log ` ( ! ` ( |_ ` x ) ) ) e. CC ) | 
						
							| 98 |  | rpcnne0 |  |-  ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 99 |  | divsubdir |  |-  ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) e. CC /\ ( log ` ( ! ` ( |_ ` x ) ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) | 
						
							| 100 | 96 97 98 99 | syl3anc |  |-  ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) | 
						
							| 101 |  | rpne0 |  |-  ( x e. RR+ -> x =/= 0 ) | 
						
							| 102 | 18 64 101 | divcan4d |  |-  ( x e. RR+ -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) / x ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) / x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) | 
						
							| 104 | 100 103 | eqtr2d |  |-  ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) | 
						
							| 105 | 104 | fveq2d |  |-  ( x e. RR+ -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) = ( abs ` ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) ) | 
						
							| 106 |  | rerpdivcl |  |-  ( ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) e. RR /\ x e. RR+ ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) e. RR ) | 
						
							| 107 | 91 106 | mpancom |  |-  ( x e. RR+ -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) e. RR ) | 
						
							| 108 |  | flle |  |-  ( ( x / n ) e. RR -> ( |_ ` ( x / n ) ) <_ ( x / n ) ) | 
						
							| 109 | 48 108 | syl |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( |_ ` ( x / n ) ) <_ ( x / n ) ) | 
						
							| 110 | 48 50 | subge0d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 0 <_ ( ( x / n ) - ( |_ ` ( x / n ) ) ) <-> ( |_ ` ( x / n ) ) <_ ( x / n ) ) ) | 
						
							| 111 | 109 110 | mpbird |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) | 
						
							| 112 | 15 53 56 111 | mulge0d |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( Lam ` n ) x. ( ( x / n ) - ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 113 | 112 74 | breqtrd |  |-  ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 114 | 11 52 113 | fsumge0 |  |-  ( x e. RR+ -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. x ) - ( ( Lam ` n ) x. ( |_ ` ( x / n ) ) ) ) ) | 
						
							| 115 | 114 86 | breqtrrd |  |-  ( x e. RR+ -> 0 <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) | 
						
							| 116 |  | divge0 |  |-  ( ( ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) e. RR /\ 0 <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) ) /\ ( x e. RR /\ 0 < x ) ) -> 0 <_ ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) | 
						
							| 117 | 91 115 92 116 | syl21anc |  |-  ( x e. RR+ -> 0 <_ ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) | 
						
							| 118 | 107 117 | absidd |  |-  ( x e. RR+ -> ( abs ` ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) | 
						
							| 119 | 105 118 | eqtrd |  |-  ( x e. RR+ -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. x ) - ( log ` ( ! ` ( |_ ` x ) ) ) ) / x ) ) | 
						
							| 120 |  | chpge0 |  |-  ( x e. RR -> 0 <_ ( psi ` x ) ) | 
						
							| 121 | 36 120 | syl |  |-  ( x e. RR+ -> 0 <_ ( psi ` x ) ) | 
						
							| 122 |  | divge0 |  |-  ( ( ( ( psi ` x ) e. RR /\ 0 <_ ( psi ` x ) ) /\ ( x e. RR /\ 0 < x ) ) -> 0 <_ ( ( psi ` x ) / x ) ) | 
						
							| 123 | 38 121 92 122 | syl21anc |  |-  ( x e. RR+ -> 0 <_ ( ( psi ` x ) / x ) ) | 
						
							| 124 | 40 123 | absidd |  |-  ( x e. RR+ -> ( abs ` ( ( psi ` x ) / x ) ) = ( ( psi ` x ) / x ) ) | 
						
							| 125 | 95 119 124 | 3brtr4d |  |-  ( x e. RR+ -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) <_ ( abs ` ( ( psi ` x ) / x ) ) ) | 
						
							| 126 | 125 | ad2antrl |  |-  ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) <_ ( abs ` ( ( psi ` x ) / x ) ) ) | 
						
							| 127 | 33 35 42 44 126 | o1le |  |-  ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) e. O(1) ) | 
						
							| 128 | 127 | mptru |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) e. O(1) | 
						
							| 129 |  | logfacrlim |  |-  ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ~~>r 1 | 
						
							| 130 |  | rlimo1 |  |-  ( ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ~~>r 1 -> ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) e. O(1) ) | 
						
							| 131 | 129 130 | ax-mp |  |-  ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) e. O(1) | 
						
							| 132 |  | o1sub |  |-  ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) e. O(1) /\ ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) oF - ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) e. O(1) ) | 
						
							| 133 | 128 131 132 | mp2an |  |-  ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) oF - ( x e. RR+ |-> ( ( log ` x ) - ( ( log ` ( ! ` ( |_ ` x ) ) ) / x ) ) ) ) e. O(1) | 
						
							| 134 | 32 133 | eqeltrri |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |