Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( log ` U. s ) e. _V |
2 |
|
c0ex |
|- 0 e. _V |
3 |
1 2
|
ifex |
|- if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V |
4 |
3
|
csbex |
|- [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V |
5 |
4
|
a1i |
|- ( ( T. /\ x e. NN ) -> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V ) |
6 |
|
df-vma |
|- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
7 |
6
|
a1i |
|- ( T. -> Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) ) |
8 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
9 |
8
|
adantl |
|- ( ( T. /\ n e. NN ) -> ( Lam ` n ) e. RR ) |
10 |
5 7 9
|
fmpt2d |
|- ( T. -> Lam : NN --> RR ) |
11 |
10
|
mptru |
|- Lam : NN --> RR |