| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex |  |-  ( log ` U. s ) e. _V | 
						
							| 2 |  | c0ex |  |-  0 e. _V | 
						
							| 3 | 1 2 | ifex |  |-  if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V | 
						
							| 4 | 3 | csbex |  |-  [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V | 
						
							| 5 | 4 | a1i |  |-  ( ( T. /\ x e. NN ) -> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) e. _V ) | 
						
							| 6 |  | df-vma |  |-  Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) | 
						
							| 7 | 6 | a1i |  |-  ( T. -> Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) ) | 
						
							| 8 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 9 | 8 | adantl |  |-  ( ( T. /\ n e. NN ) -> ( Lam ` n ) e. RR ) | 
						
							| 10 | 5 7 9 | fmpt2d |  |-  ( T. -> Lam : NN --> RR ) | 
						
							| 11 | 10 | mptru |  |-  Lam : NN --> RR |