Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( ( Lam ` A ) = 0 -> ( ( Lam ` A ) <_ ( log ` A ) <-> 0 <_ ( log ` A ) ) ) |
2 |
|
isppw2 |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 <-> E. p e. Prime E. k e. NN A = ( p ^ k ) ) ) |
3 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
4 |
3
|
nnrpd |
|- ( p e. Prime -> p e. RR+ ) |
5 |
4
|
adantr |
|- ( ( p e. Prime /\ k e. NN ) -> p e. RR+ ) |
6 |
5
|
relogcld |
|- ( ( p e. Prime /\ k e. NN ) -> ( log ` p ) e. RR ) |
7 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
8 |
7
|
adantl |
|- ( ( p e. Prime /\ k e. NN ) -> k e. RR ) |
9 |
|
log1 |
|- ( log ` 1 ) = 0 |
10 |
3
|
adantr |
|- ( ( p e. Prime /\ k e. NN ) -> p e. NN ) |
11 |
10
|
nnge1d |
|- ( ( p e. Prime /\ k e. NN ) -> 1 <_ p ) |
12 |
|
1rp |
|- 1 e. RR+ |
13 |
|
logleb |
|- ( ( 1 e. RR+ /\ p e. RR+ ) -> ( 1 <_ p <-> ( log ` 1 ) <_ ( log ` p ) ) ) |
14 |
12 5 13
|
sylancr |
|- ( ( p e. Prime /\ k e. NN ) -> ( 1 <_ p <-> ( log ` 1 ) <_ ( log ` p ) ) ) |
15 |
11 14
|
mpbid |
|- ( ( p e. Prime /\ k e. NN ) -> ( log ` 1 ) <_ ( log ` p ) ) |
16 |
9 15
|
eqbrtrrid |
|- ( ( p e. Prime /\ k e. NN ) -> 0 <_ ( log ` p ) ) |
17 |
|
nnge1 |
|- ( k e. NN -> 1 <_ k ) |
18 |
17
|
adantl |
|- ( ( p e. Prime /\ k e. NN ) -> 1 <_ k ) |
19 |
6 8 16 18
|
lemulge12d |
|- ( ( p e. Prime /\ k e. NN ) -> ( log ` p ) <_ ( k x. ( log ` p ) ) ) |
20 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
21 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
22 |
|
relogexp |
|- ( ( p e. RR+ /\ k e. ZZ ) -> ( log ` ( p ^ k ) ) = ( k x. ( log ` p ) ) ) |
23 |
4 21 22
|
syl2an |
|- ( ( p e. Prime /\ k e. NN ) -> ( log ` ( p ^ k ) ) = ( k x. ( log ` p ) ) ) |
24 |
19 20 23
|
3brtr4d |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) <_ ( log ` ( p ^ k ) ) ) |
25 |
|
fveq2 |
|- ( A = ( p ^ k ) -> ( Lam ` A ) = ( Lam ` ( p ^ k ) ) ) |
26 |
|
fveq2 |
|- ( A = ( p ^ k ) -> ( log ` A ) = ( log ` ( p ^ k ) ) ) |
27 |
25 26
|
breq12d |
|- ( A = ( p ^ k ) -> ( ( Lam ` A ) <_ ( log ` A ) <-> ( Lam ` ( p ^ k ) ) <_ ( log ` ( p ^ k ) ) ) ) |
28 |
24 27
|
syl5ibrcom |
|- ( ( p e. Prime /\ k e. NN ) -> ( A = ( p ^ k ) -> ( Lam ` A ) <_ ( log ` A ) ) ) |
29 |
28
|
rexlimivv |
|- ( E. p e. Prime E. k e. NN A = ( p ^ k ) -> ( Lam ` A ) <_ ( log ` A ) ) |
30 |
2 29
|
syl6bi |
|- ( A e. NN -> ( ( Lam ` A ) =/= 0 -> ( Lam ` A ) <_ ( log ` A ) ) ) |
31 |
30
|
imp |
|- ( ( A e. NN /\ ( Lam ` A ) =/= 0 ) -> ( Lam ` A ) <_ ( log ` A ) ) |
32 |
|
nnge1 |
|- ( A e. NN -> 1 <_ A ) |
33 |
|
nnrp |
|- ( A e. NN -> A e. RR+ ) |
34 |
|
logleb |
|- ( ( 1 e. RR+ /\ A e. RR+ ) -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) |
35 |
12 33 34
|
sylancr |
|- ( A e. NN -> ( 1 <_ A <-> ( log ` 1 ) <_ ( log ` A ) ) ) |
36 |
32 35
|
mpbid |
|- ( A e. NN -> ( log ` 1 ) <_ ( log ` A ) ) |
37 |
9 36
|
eqbrtrrid |
|- ( A e. NN -> 0 <_ ( log ` A ) ) |
38 |
1 31 37
|
pm2.61ne |
|- ( A e. NN -> ( Lam ` A ) <_ ( log ` A ) ) |