| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( x e. ( 1 (,) +oo ) -> x e. RR ) |
| 2 |
1
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) |
| 3 |
|
1rp |
|- 1 e. RR+ |
| 4 |
3
|
a1i |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR+ ) |
| 5 |
|
1red |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) |
| 6 |
|
eliooord |
|- ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) |
| 7 |
6
|
adantl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 < x /\ x < +oo ) ) |
| 8 |
7
|
simpld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) |
| 9 |
5 2 8
|
ltled |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> 1 <_ x ) |
| 10 |
2 4 9
|
rpgecld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) |
| 11 |
10
|
ex |
|- ( T. -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) |
| 12 |
11
|
ssrdv |
|- ( T. -> ( 1 (,) +oo ) C_ RR+ ) |
| 13 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |
| 14 |
13
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) |
| 15 |
12 14
|
o1res2 |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) |
| 16 |
|
fzfid |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 17 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 18 |
17
|
adantl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 19 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 20 |
18 19
|
syl |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
| 21 |
20 18
|
nndivred |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 23 |
16 22
|
fsumcl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
| 24 |
10
|
relogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) |
| 25 |
24
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) |
| 26 |
23 25
|
subcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) |
| 27 |
18
|
nnrpd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
| 28 |
27
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) |
| 29 |
21 28
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. RR ) |
| 30 |
16 29
|
fsumrecl |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. RR ) |
| 31 |
2 8
|
rplogcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 32 |
30 31
|
rerpdivcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) e. RR ) |
| 33 |
24
|
rehalfcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. RR ) |
| 34 |
32 33
|
resubcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. RR ) |
| 35 |
34
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) e. CC ) |
| 36 |
33
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) / 2 ) e. CC ) |
| 37 |
23 36
|
subcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) e. CC ) |
| 38 |
32
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) e. CC ) |
| 39 |
37 38 36
|
nnncan2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) |
| 40 |
23 36 36
|
subsub4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( ( log ` x ) / 2 ) + ( ( log ` x ) / 2 ) ) ) ) |
| 41 |
25
|
2halvesd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( log ` x ) / 2 ) + ( ( log ` x ) / 2 ) ) = ( log ` x ) ) |
| 42 |
41
|
oveq2d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( ( log ` x ) / 2 ) + ( ( log ` x ) / 2 ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) |
| 43 |
40 42
|
eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) |
| 44 |
43
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( ( log ` x ) / 2 ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) |
| 45 |
23 36 38
|
sub32d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) - ( ( log ` x ) / 2 ) ) ) |
| 46 |
10
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
| 47 |
46
|
relogcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` x ) e. RR ) |
| 48 |
21 47
|
remulcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) e. RR ) |
| 49 |
48
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) e. CC ) |
| 50 |
29
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. CC ) |
| 51 |
16 49 50
|
fsumsub |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
| 52 |
46 27
|
relogdivd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) = ( ( log ` x ) - ( log ` n ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( ( Lam ` n ) / n ) x. ( ( log ` x ) - ( log ` n ) ) ) ) |
| 54 |
25
|
adantr |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` x ) e. CC ) |
| 55 |
28
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) |
| 56 |
22 54 55
|
subdid |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( ( log ` x ) - ( log ` n ) ) ) = ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
| 57 |
53 56
|
eqtrd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
| 58 |
57
|
sumeq2dv |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
| 59 |
20
|
recnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) |
| 60 |
18
|
nncnd |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
| 61 |
18
|
nnne0d |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
| 62 |
59 60 61
|
divcld |
|- ( ( ( T. /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
| 63 |
16 25 62
|
fsummulc1 |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) ) |
| 64 |
63
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
| 65 |
51 58 64
|
3eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) ) |
| 66 |
65
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) / ( log ` x ) ) ) |
| 67 |
23 25
|
mulcld |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) e. CC ) |
| 68 |
30
|
recnd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) e. CC ) |
| 69 |
31
|
rpne0d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) |
| 70 |
67 68 25 69
|
divsubdird |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) ) / ( log ` x ) ) = ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) |
| 71 |
23 25 69
|
divcan4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) / ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) ) |
| 72 |
71
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( log ` x ) ) / ( log ` x ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) |
| 73 |
66 70 72
|
3eqtrd |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) ) |
| 74 |
73
|
oveq1d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) - ( ( log ` x ) / 2 ) ) ) |
| 75 |
45 74
|
eqtr4d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( ( log ` x ) / 2 ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) |
| 76 |
39 44 75
|
3eqtr3d |
|- ( ( T. /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) |
| 77 |
76
|
mpteq2dva |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) |
| 78 |
|
vmalogdivsum2 |
|- ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` ( x / n ) ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |
| 79 |
77 78
|
eqeltrdi |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) ) e. O(1) ) |
| 80 |
26 35 79
|
o1dif |
|- ( T. -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) ) |
| 81 |
15 80
|
mpbid |
|- ( T. -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) ) |
| 82 |
81
|
mptru |
|- ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( log ` n ) ) / ( log ` x ) ) - ( ( log ` x ) / 2 ) ) ) e. O(1) |