| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 2 |  | nnnn0 |  |-  ( K e. NN -> K e. NN0 ) | 
						
							| 3 |  | nnexpcl |  |-  ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN ) | 
						
							| 5 |  | eqid |  |-  { p e. Prime | p || ( P ^ K ) } = { p e. Prime | p || ( P ^ K ) } | 
						
							| 6 | 5 | vmaval |  |-  ( ( P ^ K ) e. NN -> ( Lam ` ( P ^ K ) ) = if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) ) | 
						
							| 8 |  | df-rab |  |-  { p e. Prime | p || ( P ^ K ) } = { p | ( p e. Prime /\ p || ( P ^ K ) ) } | 
						
							| 9 |  | prmdvdsexpb |  |-  ( ( p e. Prime /\ P e. Prime /\ K e. NN ) -> ( p || ( P ^ K ) <-> p = P ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( ( p e. Prime /\ P e. Prime /\ K e. NN ) -> ( p || ( P ^ K ) -> p = P ) ) | 
						
							| 11 | 10 | 3coml |  |-  ( ( P e. Prime /\ K e. NN /\ p e. Prime ) -> ( p || ( P ^ K ) -> p = P ) ) | 
						
							| 12 | 11 | 3expa |  |-  ( ( ( P e. Prime /\ K e. NN ) /\ p e. Prime ) -> ( p || ( P ^ K ) -> p = P ) ) | 
						
							| 13 | 12 | expimpd |  |-  ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) -> p = P ) ) | 
						
							| 14 |  | simpl |  |-  ( ( P e. Prime /\ K e. NN ) -> P e. Prime ) | 
						
							| 15 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 16 |  | iddvdsexp |  |-  ( ( P e. ZZ /\ K e. NN ) -> P || ( P ^ K ) ) | 
						
							| 17 | 15 16 | sylan |  |-  ( ( P e. Prime /\ K e. NN ) -> P || ( P ^ K ) ) | 
						
							| 18 | 14 17 | jca |  |-  ( ( P e. Prime /\ K e. NN ) -> ( P e. Prime /\ P || ( P ^ K ) ) ) | 
						
							| 19 |  | eleq1 |  |-  ( p = P -> ( p e. Prime <-> P e. Prime ) ) | 
						
							| 20 |  | breq1 |  |-  ( p = P -> ( p || ( P ^ K ) <-> P || ( P ^ K ) ) ) | 
						
							| 21 | 19 20 | anbi12d |  |-  ( p = P -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> ( P e. Prime /\ P || ( P ^ K ) ) ) ) | 
						
							| 22 | 18 21 | syl5ibrcom |  |-  ( ( P e. Prime /\ K e. NN ) -> ( p = P -> ( p e. Prime /\ p || ( P ^ K ) ) ) ) | 
						
							| 23 | 13 22 | impbid |  |-  ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> p = P ) ) | 
						
							| 24 |  | velsn |  |-  ( p e. { P } <-> p = P ) | 
						
							| 25 | 23 24 | bitr4di |  |-  ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> p e. { P } ) ) | 
						
							| 26 | 25 | eqabcdv |  |-  ( ( P e. Prime /\ K e. NN ) -> { p | ( p e. Prime /\ p || ( P ^ K ) ) } = { P } ) | 
						
							| 27 | 8 26 | eqtrid |  |-  ( ( P e. Prime /\ K e. NN ) -> { p e. Prime | p || ( P ^ K ) } = { P } ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( P e. Prime /\ K e. NN ) -> ( # ` { p e. Prime | p || ( P ^ K ) } ) = ( # ` { P } ) ) | 
						
							| 29 |  | hashsng |  |-  ( P e. Prime -> ( # ` { P } ) = 1 ) | 
						
							| 30 | 29 | adantr |  |-  ( ( P e. Prime /\ K e. NN ) -> ( # ` { P } ) = 1 ) | 
						
							| 31 | 28 30 | eqtrd |  |-  ( ( P e. Prime /\ K e. NN ) -> ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 ) | 
						
							| 32 | 31 | iftrued |  |-  ( ( P e. Prime /\ K e. NN ) -> if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) = ( log ` U. { p e. Prime | p || ( P ^ K ) } ) ) | 
						
							| 33 | 27 | unieqd |  |-  ( ( P e. Prime /\ K e. NN ) -> U. { p e. Prime | p || ( P ^ K ) } = U. { P } ) | 
						
							| 34 |  | unisng |  |-  ( P e. Prime -> U. { P } = P ) | 
						
							| 35 | 34 | adantr |  |-  ( ( P e. Prime /\ K e. NN ) -> U. { P } = P ) | 
						
							| 36 | 33 35 | eqtrd |  |-  ( ( P e. Prime /\ K e. NN ) -> U. { p e. Prime | p || ( P ^ K ) } = P ) | 
						
							| 37 | 36 | fveq2d |  |-  ( ( P e. Prime /\ K e. NN ) -> ( log ` U. { p e. Prime | p || ( P ^ K ) } ) = ( log ` P ) ) | 
						
							| 38 | 7 32 37 | 3eqtrd |  |-  ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = ( log ` P ) ) |