Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
2 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
3 |
|
nnexpcl |
|- ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN ) |
4 |
1 2 3
|
syl2an |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN ) |
5 |
|
eqid |
|- { p e. Prime | p || ( P ^ K ) } = { p e. Prime | p || ( P ^ K ) } |
6 |
5
|
vmaval |
|- ( ( P ^ K ) e. NN -> ( Lam ` ( P ^ K ) ) = if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) ) |
7 |
4 6
|
syl |
|- ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) ) |
8 |
|
df-rab |
|- { p e. Prime | p || ( P ^ K ) } = { p | ( p e. Prime /\ p || ( P ^ K ) ) } |
9 |
|
prmdvdsexpb |
|- ( ( p e. Prime /\ P e. Prime /\ K e. NN ) -> ( p || ( P ^ K ) <-> p = P ) ) |
10 |
9
|
biimpd |
|- ( ( p e. Prime /\ P e. Prime /\ K e. NN ) -> ( p || ( P ^ K ) -> p = P ) ) |
11 |
10
|
3coml |
|- ( ( P e. Prime /\ K e. NN /\ p e. Prime ) -> ( p || ( P ^ K ) -> p = P ) ) |
12 |
11
|
3expa |
|- ( ( ( P e. Prime /\ K e. NN ) /\ p e. Prime ) -> ( p || ( P ^ K ) -> p = P ) ) |
13 |
12
|
expimpd |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) -> p = P ) ) |
14 |
|
simpl |
|- ( ( P e. Prime /\ K e. NN ) -> P e. Prime ) |
15 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
16 |
|
iddvdsexp |
|- ( ( P e. ZZ /\ K e. NN ) -> P || ( P ^ K ) ) |
17 |
15 16
|
sylan |
|- ( ( P e. Prime /\ K e. NN ) -> P || ( P ^ K ) ) |
18 |
14 17
|
jca |
|- ( ( P e. Prime /\ K e. NN ) -> ( P e. Prime /\ P || ( P ^ K ) ) ) |
19 |
|
eleq1 |
|- ( p = P -> ( p e. Prime <-> P e. Prime ) ) |
20 |
|
breq1 |
|- ( p = P -> ( p || ( P ^ K ) <-> P || ( P ^ K ) ) ) |
21 |
19 20
|
anbi12d |
|- ( p = P -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> ( P e. Prime /\ P || ( P ^ K ) ) ) ) |
22 |
18 21
|
syl5ibrcom |
|- ( ( P e. Prime /\ K e. NN ) -> ( p = P -> ( p e. Prime /\ p || ( P ^ K ) ) ) ) |
23 |
13 22
|
impbid |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> p = P ) ) |
24 |
|
velsn |
|- ( p e. { P } <-> p = P ) |
25 |
23 24
|
bitr4di |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> p e. { P } ) ) |
26 |
25
|
abbi1dv |
|- ( ( P e. Prime /\ K e. NN ) -> { p | ( p e. Prime /\ p || ( P ^ K ) ) } = { P } ) |
27 |
8 26
|
syl5eq |
|- ( ( P e. Prime /\ K e. NN ) -> { p e. Prime | p || ( P ^ K ) } = { P } ) |
28 |
27
|
fveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { p e. Prime | p || ( P ^ K ) } ) = ( # ` { P } ) ) |
29 |
|
hashsng |
|- ( P e. Prime -> ( # ` { P } ) = 1 ) |
30 |
29
|
adantr |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { P } ) = 1 ) |
31 |
28 30
|
eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 ) |
32 |
31
|
iftrued |
|- ( ( P e. Prime /\ K e. NN ) -> if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) = ( log ` U. { p e. Prime | p || ( P ^ K ) } ) ) |
33 |
27
|
unieqd |
|- ( ( P e. Prime /\ K e. NN ) -> U. { p e. Prime | p || ( P ^ K ) } = U. { P } ) |
34 |
|
unisng |
|- ( P e. Prime -> U. { P } = P ) |
35 |
34
|
adantr |
|- ( ( P e. Prime /\ K e. NN ) -> U. { P } = P ) |
36 |
33 35
|
eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> U. { p e. Prime | p || ( P ^ K ) } = P ) |
37 |
36
|
fveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( log ` U. { p e. Prime | p || ( P ^ K ) } ) = ( log ` P ) ) |
38 |
7 32 37
|
3eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = ( log ` P ) ) |