Metamath Proof Explorer


Theorem vmaprm

Description: Value of the von Mangoldt function at a prime. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion vmaprm
|- ( P e. Prime -> ( Lam ` P ) = ( log ` P ) )

Proof

Step Hyp Ref Expression
1 prmnn
 |-  ( P e. Prime -> P e. NN )
2 1 nncnd
 |-  ( P e. Prime -> P e. CC )
3 2 exp1d
 |-  ( P e. Prime -> ( P ^ 1 ) = P )
4 3 fveq2d
 |-  ( P e. Prime -> ( Lam ` ( P ^ 1 ) ) = ( Lam ` P ) )
5 1nn
 |-  1 e. NN
6 vmappw
 |-  ( ( P e. Prime /\ 1 e. NN ) -> ( Lam ` ( P ^ 1 ) ) = ( log ` P ) )
7 5 6 mpan2
 |-  ( P e. Prime -> ( Lam ` ( P ^ 1 ) ) = ( log ` P ) )
8 4 7 eqtr3d
 |-  ( P e. Prime -> ( Lam ` P ) = ( log ` P ) )