| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vmaval.1 |  |-  S = { p e. Prime | p || A } | 
						
							| 2 |  | prmex |  |-  Prime e. _V | 
						
							| 3 | 2 | rabex |  |-  { p e. Prime | p || x } e. _V | 
						
							| 4 | 3 | a1i |  |-  ( x = A -> { p e. Prime | p || x } e. _V ) | 
						
							| 5 |  | id |  |-  ( s = { p e. Prime | p || x } -> s = { p e. Prime | p || x } ) | 
						
							| 6 |  | breq2 |  |-  ( x = A -> ( p || x <-> p || A ) ) | 
						
							| 7 | 6 | rabbidv |  |-  ( x = A -> { p e. Prime | p || x } = { p e. Prime | p || A } ) | 
						
							| 8 | 7 1 | eqtr4di |  |-  ( x = A -> { p e. Prime | p || x } = S ) | 
						
							| 9 | 5 8 | sylan9eqr |  |-  ( ( x = A /\ s = { p e. Prime | p || x } ) -> s = S ) | 
						
							| 10 | 9 | fveqeq2d |  |-  ( ( x = A /\ s = { p e. Prime | p || x } ) -> ( ( # ` s ) = 1 <-> ( # ` S ) = 1 ) ) | 
						
							| 11 | 9 | unieqd |  |-  ( ( x = A /\ s = { p e. Prime | p || x } ) -> U. s = U. S ) | 
						
							| 12 | 11 | fveq2d |  |-  ( ( x = A /\ s = { p e. Prime | p || x } ) -> ( log ` U. s ) = ( log ` U. S ) ) | 
						
							| 13 | 10 12 | ifbieq1d |  |-  ( ( x = A /\ s = { p e. Prime | p || x } ) -> if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) | 
						
							| 14 | 4 13 | csbied |  |-  ( x = A -> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) | 
						
							| 15 |  | df-vma |  |-  Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) | 
						
							| 16 |  | fvex |  |-  ( log ` U. S ) e. _V | 
						
							| 17 |  | c0ex |  |-  0 e. _V | 
						
							| 18 | 16 17 | ifex |  |-  if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) e. _V | 
						
							| 19 | 14 15 18 | fvmpt |  |-  ( A e. NN -> ( Lam ` A ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) |